INLINE PROCESS DENSITY AND VISCOSITY MONITORING

rheonics

Product Portfolio

SRV

SRD

Process viscometer for Newtonian and non-Newtonian fluids. Wide viscosity range - monitor the complete process.

Single instrument for process density, viscosity and temperature measurement.

Fluid Measurements

Description

Viscosity Range

Viscosity Accuracy

Density Range Density Accuracy

Reproducibility Temperature (inbuilt) 3 to 10,000 cP o.5 to 50,000 cP (available) 5% of reading (standard) 1% & higher accuracy available

Better than 1% of reading Pt1000 (DIN EN 60751 class B)

1 to 3,000 cP wider range available

5% of reading (standard) higher accuracy available

0.4 - 1.5 g/cc 0.01 g/cc

o.oo1 g/cc & higher accuracy available Better than 1% of reading

Pt1000 (Class B)

Operational Environment

Proces Fluid Temperature Ambient Temperature Pressure Range

-40 up to 200 °C max 150 °C up to 5,000 psi

-40 up to 200 °C max 150 °C up to 5,000 psi

Mechanical

Material (Wetted parts) Diameter x Length

Process Connection

Ingress Protection Electrical Connection 316L Stainless Steel Ø35 X 140 MM 3/4" NPT Flange & sanitary connections available

IP68

M12

316L Stainless Steel Ø35 X 140 MM 3/4" NPT Flange & sanitary connections available **IP68** M12

Application

Designed for easy installation in pipelines, tanks, and process lines.

- · Process viscosity control of slurries, emulsions and other non-newtonian fluids
- · Polymerization monitoring
- · Coating and ink viscosity control
- · Marine fuel viscosity control
- · Drilling mud density and viscosity
- · Newtonian and nonnewtonian fluids
- · Pipeline and pumping efficiency and leak detection
- · Fuel consumption monitoring

rheonics inline process

density and viscosity monitoring

DVP

Simultaneous density, viscosity and temperature measurement at HPHT conditions.

0.2 to 300 cP

-40 up to 200 °C

up to 10,000 psi

· High pressure processes

· LNG density metering

magnetic particles

· Custody transfer - liquid, gas

· Not suitable for liquids with

max 150 °C

DVM

Designed for reservoir fluid analysis. Simultaneous density and viscosity measurement at 30,000 psi & 200 °C.

Electronics & Communication

SME-TRD

Analog output 4-20 mA (3 channel)

Viscosity, Density, Temp.

Digital output Modbus RTU (RS-485)

> Ethernet USB

HART(optional)

Wireless output Bluetooth LE 4.0

Wi-fi (optional)

WirelessHART/ISO100

Multi-line LCD Display

(SME-TRD) (max. 55°c)

Operational temp. max. 55 °C Power supply 24 V DC SME-TR(D) IP65/66 SME-DRM IP40/50 Software Data acquisition and service

0,		3	
No. 16 A State of Sta	7	0	0
A COLUMN TO A COLU			
	11 3		

SME-DRM

0.2 10 500	3 61	0.2 (0)00 (1
		lower than o.2 cP available
o.1 cP bel	ow 1 cP	o.1 cP below 1 cP
5% of rea	ading (standard)	5% of reading (standard)
higher accura	acy available	higher accuracy available
0 - 1.5 g/0	CC	o – 1.5 g/cc
0.001 g/c	C	0.001 g/cc
higher accura	acy available	higher accuracy available
Better tha	an 1% of reading	Better than 1% of reading
Pt1000 (cla	ass AA)	Pt100 (Class AA)

0.2 to 300 cP

Titanium Grade 5	Titanium Grade 5
ø35 x 120 mm	44 × 55 × 75.3 mm
1" NPT	1/4" HP (9/16-18 UNF)
Flange & sanitary connections available	
IP68	IP69
M12	Fixed cable
· Gas and liquid density	· HPHT fluid analysis

-40 up to 200 °C

up to 30,000 psi

max 200 °C

- · PVT viscosity & density
- · EOR density & viscosity
- · Core flow fluid measurements
- · Lubricant viscosity monitoring

INVENTED, DESIGNED, AND BUILT WITH SWISS PRECISION

Invented, designed and built by an ETH Zurich spin-off team with over 150 years of collective experience in resonant sensor technology. Rheonics proprietary technology is protected by a growing portfolio of US & international patents.

Precision built in Switzerland, each Rheonics fluid density and viscosity sensor is designed to match your application needs. Whether you need to measure density and viscosity downhole at 30,000 psi and 200 °C or monitor the viscosity of polymerization reactions, we have a solution for you.

Rheonics density and viscosity sensors are available in probe and flow through styles. All Rheonics products are designed to withstand the harshest process environments including high level of shock, vibrations, abrasives & corrosives.

30 YEARS OF DEVELOPING INNOVATIVE FLUID DENSITY & VISCOSITY MONITORING

1985	Conceptual framework at ETH Zurich	Contact Information
1990	First viscometer patented	www.rheonics.com
		info@rheonics.com
1998	Gated PLL technology patented	
		rheonics Inc.
2003	Process Viscometer developed	3 Sugar Creek Center Blvd, Ste 100
		Sugar Land, TX 77478
2010	Developed HPHT D-V sensor	United States of America
		+1 713 364 5427
2012	rheonics incorporated	
		rheonics GmbH
2013	HPHT Viscosity and Density Sensor for Oil	Klosterstrasse 19
	and Gas (DVM)	8406 Winterthur
2014	Inline process Density & Viscosity Sensor (DVP)	Switzerland
		+41 52 511 32 00
2015	Inline process Viscometer (SRV)	>
		Á b
2016	Inline process Density & Viscosity Meter (SRD)	ente
		lese
rheonics PP17		Represented by