Radar Transmitters SITRANS LR250 (FOUNDATION FIELDBUS)

Operating Instructions • 06/2010

SITRANS

SIEMENS

Safety Guidelines: Warning notices must be observed to ensure personal safety as well as that of others, and to protect the product and the connected equipment. These warning notices are accompanied by a clarification of the level of caution to be observed.

Qualified Personnel: This device/system may only be set up and operated in conjunction with this manual. Qualified personnel are only authorized to install and operate this equipment in accordance with established safety practices and standards.

Unit Repair and Excluded Liability:

- The user is responsible for all changes and repairs made to the device by the user or the user's
 agent.
- All new components are to be provided by Siemens Milltronics Process Instruments Inc.
- · Restrict repair to faulty components only.
- Do not reuse faulty components.

Warning: Cardboard shipping package provides limited humidity and moisture protection. This product can only function properly and safely if it is correctly transported, stored, installed, set up, operated, and maintained

This product is intended for use in industrial areas. Depration of this equipment in a residential area may cause interference to several frequency based communications.

Note: Always use product in accordance with specifications.

Instruments Inc. 2010. All Rights Reserved This document is available in bound version and in electronic version. We encourage users to purchase authorized bound manuals, or to view electronic While we have verified the contents of this manual for agreement with the instrumenta described, variations remain possible. Thus

electronic version. We encourage users to purchase authorized bound manuals, or to view electronic versions as designed and authored by Siemens Milltronics Process Instruments Inc. Siemens Milltronics Process Instruments Inc. will not be responsible for the contents of partial or whole reproductions of either bound or electronic versions.

Copyright Siemens Milltronics Process

manual for agreement with the instrumentation described, variations remain possible. Thus we cannot guarantee full agreement. The contents of this manual are regularly reviewed and corrections are included in subsequent editions. Please check the website shown below for the latest manual revisions.

We welcome all suggestions for improvement.

Disclaimer of Liability

Technical data subject to change.

MILLTRONICS® is a registered trademark of Siemens Milltronics Process Instruments Inc.

Contact SMPI Technical Publications at the following address:

Technical Publications
Siemens Milltronics Process Instruments Inc.
1954 Technology Drive, P.O. Box 4225
Peterborough, Ontario, Canada, K9J 7B1
Email: techpubs.smpi@siemens.com

European Authorized Representative

Siemens AG Industry Sector 76181 Karlsruhe Deutschland

- For a selection of Siemens Milltronics level measurement manuals, go to: www.siemens.com/level. Choose Instructions and Manuals under the More Info list.
- For a selection of Siemens Milltronics weighing manuals, go to: www.siemens.com/weighing. Choose Support, and then Manuals / Operating Instructions.

Table of Contents

Safety Notes	
Safety marking symbols	
FCC Conformity	
CE Electromagnetic Compatibility (EMC) Conformity	
Industry Canada	2
The Manual	
Application Examples	3
Technical Support	
Abbreviations and Identifications	
SITRANS LR250 Overview	6
Specifications	
Threaded Horn Antenna with extension	12
Flanged Horn	
Raised Face Flange per EN 1092-1	
Flat Faced Flange	
Installation	19
Pressure Equipment Directive, PED, 97/23/EC	
Nozzle design	
Orientation in a vessel with obstructions	
Mounting on a Stillpipe or Bypass Pipe	
Installation Instructions	
Wiring	
Power	22
Connecting SITRANS LR250	
Basic Configuration with Foundation Fieldbus (H1)	
Wiring Setups for hazardous area installations	
Configuration with Foundation Fieldbus for hazardous areas	24
Instructions specific to hazardous area installations	
Instructions specific to hazardous area installations Quick Start	29
Quick Start	30
Quick Start	30
Quick Start	30 30 3
Quick Start	30 30 37
Quick Start	30 30 37 33
Quick Start	30 30 32 33
Quick Start	30 30 31 33 33 36
Quick Start	
Quick Start	
Quick Start	29 30 31 32 33 33 36 38 38 38
Quick Start	29 30 31 32 33 36 38 38 38 38

Key Features of AMS Device Manager Rev. 9.0	4
Adding a new device	42
Electronic Device Description (EDD)	42
Master Reset	4/
Scan Device	4/
Sensor calibration	44
Configuring a new device	44
Quick Start Wizard via AMS Device Manager	45
Changing parameter settings using AMS Device Manager	49
Configure/Setup (Level Transducer Block-LTB)	49
Identification (LTB)	49
Operation (LTB)	50
Setup (LTB)	
Linearization (LTB)	53
Signal Processing (LTB)	
Maintenance & Diagnostics (LTB)	
Communication (LTB)	
Configure/Setup (Liquid Crystal Display Block-LCD)	
Identification (LCD)	
Operation (LCD)	
Setup (LCD)	
Communication (LCD)	
Configure/Setup (Diagnostic Transducer Block-DIAG)	
Identification (DIAG)	
Operation (DIAG)	
Communication (DIAG)	
Configure/Setup (Resource Block - RESOURCE)	
Identification (RESOURCE)	
Wizards (RESOURCE)	
Operation (RESOURCE)	
Maintenance & Diagnostics (RESOURCE)	
Communication (RESOURCE)	
Security (RESOURCE)	
Device Diagnostics (Level Transducer Block - LTB)	
Alarms & Errors (LTB)	
Extended Diagnostics (LTB)	
Device Diagnostics (Liquid Crystal Display Block - LCD)	
Alarms & Errors (LCD)	
Device Diagnostics (Diagnostic Transducer Block - DIAG)	
Alarms & Errors (DIAG)	
Device Diagnostics (Resource Block - RESOURCE)	
Alarms & Errors (RESOURCE)	
Extended Diagnostics (RESOURCE)	
Process Variables (Level Transducer Block-LTB)	
Password Protection	
User Manager utility	
AMS Menu Structure	
ameter Reference (LUI)	
Quick Start	
Setup	
OGUP	

Identification	. 97
Device	. 97
Sensor	. 97
Linearization	101
Signal Processing	104
AIFB 1	113
AIFB 2	116
Measured Values	116
Diagnostics	117
Echo Profile	117
Fault Reset	117
Electronics Temperature	118
Peak Values	118
Service	119
Master Reset	119
Remaining Device Lifetime	120
	121
Service Schedule	123
	125
Manufacture Date	127
Powered Hours	127
Power-on Resets	127
LCD Fast Mode	127
LCD Contrast	127
	128
Simulate Enable	128
Communication	128
	128
	128
Ward In Arell Ward Ward Const.	128
	129
	129
7-10-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	129
	129
Remote Access	
Local Access	
Language	130
Appendix A: Alphabetical Parameter List	131
Appendix B: Troubleshooting	135
Device Status Icons	
General Fault Codes	
Operation Troubleshooting	
operation mounicanoung	144
Appendix C: Maintenance	144
Unit Repair and Excluded Liability	
Replacing the antenna	144
Appendix D: Technical Reference	145
Principles of Operation	145

E-la Danasaria	1.45
Echo Processing	
Process Intelligence	
Echo Selection	
Measurement Range	
Measurement Response	
Damping	150
Loss of Echo (LOE)	150
LOE Timer	151
Maximum Process Temperature Chart	151
Process Pressure/Temperature derating curves	152
Pressure Equipment Directive, PED, 97/23/EC	
Horn Antenna or Wave Guide	
Annual San Francisco de Comunicación de Comuni	450
Appendix E: Application Examples	
Liquid resin in storage vessel, level measurement	
Horizontal vessel with volume measurement	157
Application with Stillpipe	158
Appendix F: Communications via Foundation Fieldbus (FF)	160
Field Communicator 375 (FC375)	160
Appendix G: Firmware Revision History	161
ndex	162
Glossary	165
CD Many Chrysture	160

Safety Notes

Special attention must be paid to warnings and notes highlighted from the rest of the text by grey boxes.

WARNING: relates to a caution symbol on the product, and means that failure to observe the necessary precautions can result in death, serious injury, and/or considerable material damage.

WARNING¹: means that failure to observe the necessary precautions can result in death, serious injury, and/or considerable material damage.

Note: means important information about the product or that part of the operating manual

Safety marking symbols

In manual	On product	Description
Ţ		Earth (ground) Terminal
(4)		Protective Conductor Terminal
\triangle	\triangle	(Label on product yellow background.) WARNING: refer to accompanying documents (manual) for details.

FCC Conformity

US Installations only: Federal Communications Commission (FCC) rules

WARNING: Changes or modifications not expressly approved by Siemens Milltronics could void the user's authority to operate the equipment.

Notes:

- This equipment has been tested and found to comply with the limits for a Class A
 digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to
 provide reasonable protection against harmful interference when the equipment is
 operated in a commercial environment.
- This equipment generates, uses, and can radiate radio frequency energy and, if not
 installed and used in accordance with the instruction manual, may cause harmful
 interference to radio communications. Operation of this equipment in a residential
 area is likely to cause harmful interference to radio communications, in which case
 the user will be required to correct the interference at his own expense.

¹⁾ This symbol is used when there is no corresponding caution symbol on the product.

CE Electromagnetic Compatibility (EMC) Conformity

This equipment has been tested and found to comply with the following EMC Standards:

EMC Standard	Title
CISPR 11:2004/EN 55011:1998+A1:1999&A2:2002, CLASS B	Limits and methods of measurements of radio disturbance characteristics of industrial, scientific, and medical (ISM) radio-frequency equipment.
EN 61326:1997+A1:1998+A2:2001+A3:2003 (IEC 61326:2002)	Electrical Equipment for Measurement, Control and Laboratory Use – Electromagnetic Compatibility.
EN61000-4-2:2001	Electromagnetic Compatibility (EMC) Part 4-2:Testing and measurement techniques – Electrostatic discharge immunity test.
EN61000-4-3:2002	Electromagnetic Compatibility (EMC) Part 4-3: Testing and measurement techniques – Radiated, radio-frequency, electromagnetic field immunity test.
EN61000-4-4:2004	Electromagnetic Compatibility (EMC) Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test.
EN61000-4-5:2001	Electromagnetic Compatibility (EMC) Part 4-5: Testing and measurement techniques – Surge immunity test.
EN61000-4-6:2004	Electromagnetic Compatibility (EMC) Part 4-6: Testing and measurement techniques — Immunity to conducted disturbances, induced by radio-frequency fields.
EN61000-4-8:2001	Electromagnetic Compatibility (EMC) Part 4-8: Testing and measurement techniques – Power frequency magnetic field immunity test.

Industry Canada

- a) Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.
- b) This device shall be installed and operated in a completely enclosed container to prevent RF emission which otherwise can interfere with aeronautical navigation. Installation shall be done by trained installers, in strict compliance with the manufacturer's instructions.
- c) The use of this device is on a "no-interference, no-protection" basis. That is, the user shall accept operations of high-powered radar in the same frequency band which may interfere with or damage this device. On the other hand, level probing devices found to interfere with primary licensing operations will be required to be removed at the user's expense.

The Manual

Notes:

- This product is intended for use in industrial areas. Operation of this equipment in a residential area may cause interference to several frequency based communications
- Please follow the installation and operating procedures for a quick, trouble-free installation and to ensure the maximum accuracy and reliability of your SITRANS LR250.
- This manual applies to the SITRANS LR250 (FOUNDATIONTM Fieldbus)^{a)} only.
 - a) FOUNDATIONTM Fieldbus is a trademark of Fieldbus Foundation.

This manual will help you set up your SITRANS LR250 for optimum performance. The manual *Foundation Fieldbus for Level Instruments* (7 ML19985MP01) provides details on FF communication. We always welcome suggestions and comments about manual content, design, and accessibility. Please direct your comments to techpubs.smpi@siemens.com.

For other Siemens Milltronics level measurement manuals, go to: www.siemens.com/level, and look under **Level Measurement**.

Application Examples

The application examples used in this manual illustrate typical installations using SITRANS LR250. (See *Appendix E: Application Examples* on page 156.) Because there is often a range of ways to approach an application, other configurations may also apply.

In all examples, substitute your own application details. If the examples do not apply to your application, check the applicable parameter reference for the available options.

Technical Support

Support is available 24 hours a day.

To find your local Siemens Automation Office address, phone number and fax number go to:

www.siemens.com/automation/partner

- Click on the tab Contacts by Product then find your product group (+Process Automation > +Process Instrumentation > +Level Measuring Instruments).
- Select the team Technical Support. Click on Next.
- Click on the appropriate continent, then select the country followed by the city.
 Click on Next.

For on-line technical support go to:

www.siemens.com/automation/support-request

- Enter the device name (SITRANS LR250) or order number, then click on Search, and select the appropriate product type. Click on Next.
- You will be prompted to enter a keyword describing your issue. Then either browse the relevant documentation, or click on **Next** to E-mail a detailed description of your issue to Siemens Technical Support staff.

Siemens A&D Technical Support Center: phone +49 180 50 50 222

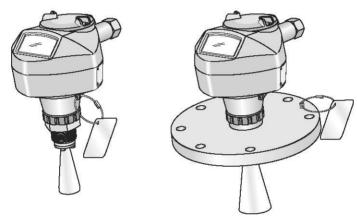
fax +49 180 50 50 223

Abbreviations and Identifications

Short form	Long Form	Description	Units
AIFB	Analog Input Function Block		
CE/FM/ CSA	Conformité Européene / Factory Mutual / Canadian Standards Association	safety approval	
Ci	Internal capacitance		F
DCS	Distributed Control System	process control	
DD	See EDD		
DIAG TB	Diagnostic Transducer Block		
dK	dielectric constant		
EDD	Electronic Device Description	(also referred to as DD)	
FF	Foundation Fieldbus	communication protocol	
H1	31.25 kbps 2-wire fieldbus protocol		
HSE	High Speed Ethernet	communication protocol	
ITK	Interoperability Test Kit		
l _i	Input current		mΑ
I _o	Output current		mA
IS	Intrinsically Safe	safety approval	
LCD TB	Liquid Crystal Display Transducer Block		

chart continued on next page

Short form	Long Form	Description	Units (cont'd)
Li	Internal inductance		mH
LTB	Level Transducer Block		
mH	milliHenry	10 ⁻³	Henry
μF	microFarad	10 ⁻⁶	Farad
μs	microsecond	10 ⁻⁶	Second
PED	Pressure Equipment Directive	safety approval	
pF	pico Farads	10 ⁻¹²	Farad
ppm	parts per million		
PV	Primary Value ^{a)}	measured value	
RB	Resource Block		
SELV	Safety extra low voltage		
SV	Secondary Value ^{a)}	equivalent value	
TVT	Time Varying Threshold	sensitivity threshold	
U _i	Input voltage		٧
U_{o}	Output voltage		٧


The output from the Level Transducer Block can be called the Primary Value (or Secondary Value). When it becomes the input to the AIFB, it is called the Process Variable.

SITRANS LR250 Overview

SITRANS LR250 is a 2-wire 25 GHz pulse radar level transmitter for continuous monitoring of liquids and slurries in storage vessels including high pressure and high temperature, to a range of 20 m (66 ft). It is ideal for small vessels and low dielectric media.

The instrument consists of an electronic component coupled to a horn antenna and either a threaded or flange type process connection.

SITRANS LR250 supports Foundation Fieldbus (FF) communication protocol. Signals are processed using Process Intelligence which has been field-proven in over 1,000,000 applications worldwide (ultrasonic and radar). This device can be configured as an FF (H1) Link Master.

Programming

SITRANS LR250 is very easy to install and configure via a graphical local user interface (LUI). You can modify the built in parameters either locally via the Siemens infrared handheld programmer, via the 375 Field Communicator, or from a remote location via FF host system, or AMS Device Manager.

Applications

- liquids and slurries
- bulk storage vessels
- · simple process vessels

Approvals and Certificates

SITRANS LR250 is available with General Purpose approval, or for hazardous areas. For details see *Approvals* on page 10.

9-32 V DC

Specifications

Notes:

 Siemens Milltronics makes every attempt to ensure the accuracy of these specifications but reserves the right to change them at any time.

Power

General Purpose: Intrinsically Safe:

Non-Sparking/Energy Limited:

Non-incendive:

Bus powered 9-32 V DC, per IEC 61158-2 (Foundation Fieldbus)

Current consumed 20 mA

Performance

Reference operating conditions according to IEC 60770-1

ambient temperature +15 to +25 °C (+59 to +77 °F)
 humidity 45% to 75% relative humidity

ambient pressure
 860 to 1060 mbar g (86,000 to 106,000 N/m² g)

Measurement Accuracy (measured in accordance with IEC 60770-1)

Maximum measured error = 5 mm (0.02") (including hysteresis and non-

repeatability)

Frequency 25 GHz pulse

Max. measurement range^{1) 2)} 20 m (65.6 ft) except for 1.5" (40 mm) horn which has

10 m (32.8 ft) range

Min. detectable distance³⁾ 50 mm (1.97") from end of horn

Update time Minimum 1.5 seconds, depending on settings for

Response Rate and LCD Fast Mode (4.9.).

Influence of ambient temperature <0.003% / K (average over full temperature range,

referenced to maximum range)

Dielectric constant of material measured

dK > 2.0, horn and application dependent⁴⁾

¹⁾ From sensor reference point: see *Threaded Horn Antenna with extension* on page 12 and *Flanged Horn* on page 13.

Although the maximum measurement range can be set to a value up to 30 m (98.4 ft), performance is only guaranteed to 20 m (65.6 ft).

 $^{^{3)}}$ Minimum range is horn length + 50 mm. See $\it Dimensions$ on page 11.

⁴⁾ For 1.5" (40 mm) and 2" (51 mm) horns the dK is limited to 3 unless a stillpipe is used.

Memory

- non-volatile FEPROM
- · no battery required

Interface

Communication

· Foundation Fieldbus

ITK version 5 Blocks supported:

RESOURCE, LTB, AIFB1, AIFB2, LCD, DIAG

Block execution time:

AIFB - 40 ms

Configuration

remote
 FF host system or Emerson AMS (PC)

local Siemens Milltronics infrared handheld programmer

[see *Programmer (infrared keypad)* on page 11], or Field Communicator 375 [see *Field Communicator 375*

(FC375) on page 160]

Display (local)¹⁾ Graphic LCD, with bar graph (representing level)

Mechanical

Process Connections:

threaded connection
 1.5" NPT (ANSI/ASME B1.20.1), R (BSPT, EN 10226-1) or

G (BSPP, EN ISO 228-1)

or 2" NPT (ANSI/ASME B1.20.1), R (BSPT, EN 10226-1) or

G (BSPP, EN ISO 228-1)

flange connection (flat faced)

2", 3", 4" (ASME 150 lb, 300 lb) DN50. DN80. DN100 (PN16. PN40)

50A, 80A, 100A (JIS 10K)

materials 316 L /1.4404 stainless steel

or 316 L /1.4435 stainless steel, optional alloy N06022/

2.4602

· flange connection (raised face)

DN50, DN80, DN100 (PN10/16, PN25/40)

DN150 (PN10/16, PN 25/40)

per EN 1092-1 B1

materials 1.4404 or 1.4435 stainless steel, optional Alloy N06022/

2.4602

Antenna:

horn standard 1.5" (40 mm), 2" (50 mm), 3" (80 mm), and

4" (100 mm) horn, optional 100 mm (4") horn extension

Display quality will be degraded in temperatures below -20 °C (-4 °F) and above +65 °C (+149 °F).

materials 316L stainless steel with PTFE emitter

optional Alloy N06022/2.4602 with PTFE emitter

Enclosure

construction aluminum, polyester powder-coated

conduit entry
 2 x M20x1.5, or 2 x ½" NPT

conduit entry connector M12 connector (shipped with M20 to M12 adaptor),
 (optional) or 7.8" connector (shipped with 1/2" NPT to 7.8" adaptor)

ingress protection
 Type 4X/NEMA 4X, Type 6/NEMA 6, IP 67, IP68

(see note below)

Weight (excluding extensions)

1.5" threaded connection with 1.5" horn antenna approx. 5.1 kg (11.2 lb)
 2" threaded connection with 2" horn antenna approx. 5.5 kg (12.1 lb)
 DN50/PN16 or 2" 150 lb flat faced flange with 2" horn antenna approx. 8 kg

DN100/PN40 or 4" ASME 300 lb flat faced flange with 4" horn antenna approx. 17.4 kg

(38.3 lb)

(17.6 lb)

DN50/PN16 raised face flange with 2" horn antenna approx. 6 kg

(13.2 lb)

DN100/PN40 raised face flange with 4" horn antenna approx.

11.3 kg (24.9 lb)

Environmental

Notes:

 Check Approvals on page 10, for the specific configuration you are about to use or install.

Use appropriate conduit seals to maintain IP or NEMA rating.

location indoor/outdoor
 altitude 5000 m (16,404 ft) max.

ambient temperature —40 to +80 °C (-40 to +176 °F)

relative humidity suitable for outdoor

Type 4X/NEMA 4X, Type 6/NEMA 6, IP67, IP68 enclosure

(see note above)

installation category
 pollution degree
 4

Process

temperature¹⁾
 at process connection

• pressure (vessel)¹ Refer to *Process Pressure/Temperature derating curves*

on page 152.

Approvals

Note: The device nameplate lists the approvals that apply to your device.

General CSA_{US/C}, CE, FM, NE 21, C-TICK

Radio FCC, Industry Canada and Europe ETSI EN 302-372, C-TICK

Hazardous Intrinsically Safe² (Europe)
 ATEX II 1G, Ex ia IIC T4

ATEX II 1D, Ex tD A20 IP67 T90 °C

Non-sparking/ (Europe) ATEX II 3G, Ex nA/nL IIC T4 Gc

Energy Limited3)

Intrinsically Safe (Canada/USA) CSA/FM Class I, Div. 1, Groups A, B, C, D;

Class II, Div. 1, Groups E, F, G; Class III T4

Non-incendive⁴⁾ (Canada/USA) CSA/FM Class I, Div. 2, Groups A, B, C, D

T5

Intrinsically Safe (International) IECEx Ex ia IIC T4, Ex tD A20 IP67 T90 °C

Flame Proof (International IECEx/ATEX II 1/2 GD, 1D, 2D, Ex dmbia IIC /Europe) T4 Ga/Gb. Ex tD A20 IP67 T90 °C

Increased Safety (International IECEx/ATEX II 1/2 GD, 1D, 2D, Ex embia IIC

/Europe) T4 Ga/Gb, Ex tD A20 IP67 T90 °C

Explosion Proof (Canada/USA) CSA/FMClass I, Div. 1, Groups A, B, C, D;

Class II, Div. 1, Groups E, F, G; Class III T4

Marine Lloyd's Register of Shipping

ABS Type Approval Bureau Veritas

The specifications apply to the standard configuration only (with FKM 0-ring). Maximum and minimum temperatures are dependent on the process connection, antenna and 0-ring materials, and vessel pressure. For more detail, or for other configurations, see Maximum Process Temperature Chart on page 151, and Process Pressure/Temperature derating curves on page 152.

²⁾ See Intrinsically Safe wiring on page 26

³⁾ See Non-Sparking-Energy Limited wiring on page 28.

⁴⁾ See Non-incendive wiring (only for USA/Canada) on page 28.

Programmer (infrared keypad)

Notes:

- Battery is non-replaceable with a lifetime expectancy of 10 years in normal use.
- To estimate the lifetime expectancy, check the nameplate on the back for the serial number. The first six numbers show the production date (mmddyy), for example, device with serial number 032608101V was produced on March 26, 2008.

Siemens Milltronics Infrared IS (Intrinsically Safe) Hand Programmer for hazardous and all other locations (battery is non-replaceable)

approval
 CSA/FM Class I, II, III, Div. 1, Groups A, B, C, D, E, F, G T6

CE

ATEX II 1GD, Ex ia IIC T4 Ga, Ex iaD 20 T135 °C

IECEx SIR 09.0073X, Ex ia IIC T4 Ga.

Ex iaD 20 T135 °C

INMETRO Br-Ex ia IIC T4

power 3 V lithium battery
 weight 150 g (0.3 lb)

• color black

part number 7ML1930-1BK

Dimensions

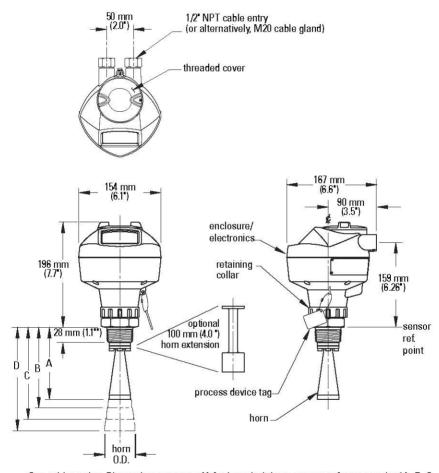
Threaded Horn dimensions

Nominal Horn Size	Horn O.D.	D.D. Horn Height to se reference po		Beam Angle ^{b)}	Measurement Range
40 mm (1.5")	39.8 mm (1.57")	Α	135 mm (5.3")	19 degrees	10 m (32.8 ft)
50 mm (2")	47.8 mm (1.88")	В	166 mm (6.55")	15 degrees	
80 mm (3")	74.8 mm (2.94")	С	199 mm (7.85")	10 degrees	20 m (65.6 ft)
100 mm (4")	94.8 mm (3.73")	D	254 mm (10")	8 degrees	1

Height from bottom of horn to sensor reference point as shown: see *Threaded Horn Antenna with extension* on page 12.

Threaded Connection Markings

Threaded connection markings are found on the flat face/faces of the process connection.

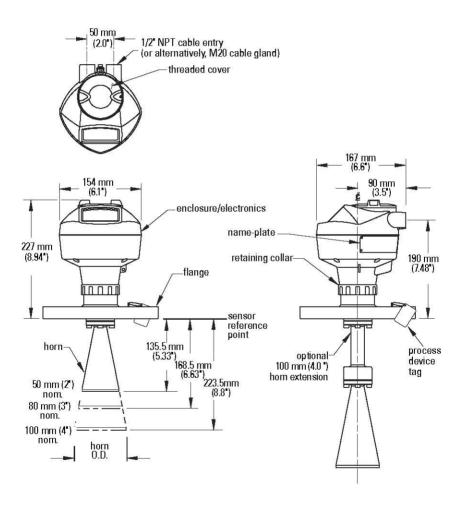

Serial number: a unique number allotted to each flange, including the date of manufacture (MMDDYY) followed by a number from 001 to 999.

b) -3 dB in the direction of the polarization axis (see *Polarization reference point* on page 20 for an illustration).

Threaded Horn Antenna with extension

Notes:

- Process temperature and pressure capabilities are dependent upon information on
 the process device tag. Reference drawing listed on the Tag is available on the
 product page of our website at www.siemens.com/LR250, under More Info /
 Installation drawings. Additional information on process connections is available
 on the Installation Drawings page under Process Connection Diagrams.
- · Signal amplitude increases with horn diameter, so use the largest practical size.
- · Optional extensions can be installed between the flange and the antenna.

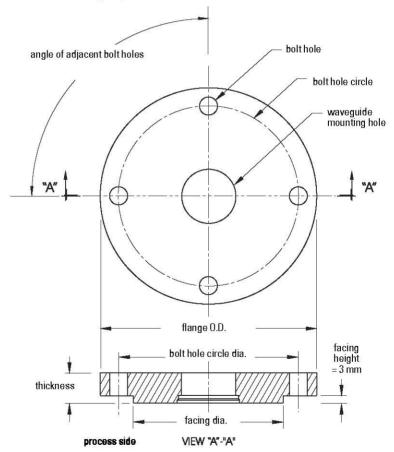


See table under *Dimensions* on page 11 for horn height to sensor reference point (A, B, C, or D).

Flanged Horn

Notes:

- Process temperature and pressure capabilities are dependent upon information on
 the process device tag. Reference drawing listed on the Tag is available on the
 product page of our website at www.siemens.com/LR250, under More Info /
 Installation drawings. Additional information on process connections is available
 on the Installation Drawings page under Process Connection Diagrams.
- · Signal amplitude increases with horn diameter, so use the largest practical size.
- Optional extensions can be installed between the flange and the antenna.


Flanged Horn dimensions

Jominal Horn Size Horn O.D.		Height to sensor reference point ^{a)}	Beam Angle ^{b)}	Measurement Range	
50 mm (2")	47.8 mm (1.88")	135.5 mm (5.33")	15 degrees		
80 mm (3")	74.8 mm (2.94")	168.5 mm (6.63")	10 degrees	20 m (65.6 ft)	
100 mm (4")	94.8 mm (3.73")	223.5 mm (8.8")	8 degrees		

- a) Height from bottom of horn to sensor reference point as shown: see *Flanged Horn* on page 13.
- -3 dB in the direction of the polarization axis (see *Polarization reference point* on page 20 for an illustration).

For flange dimensions see *Raised Face Flange per EN 1092-1* on page 14 or *Flat Faced Flange* on page 16.

Raised Face Flange per EN 1092-1

Raised Face Flange Dimensions

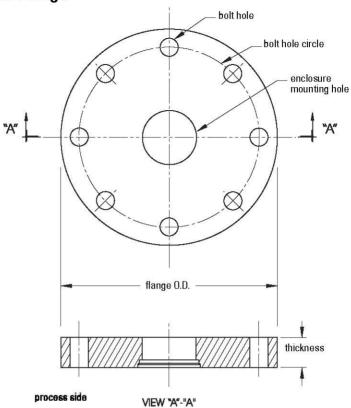
Pipe size	Flange bolt hole pattern	Flange O.D. (mm)	Bolt Hole Circle Ø (mm)	Bolt Hole Ø (mm)	No. of Bolts	Angle of adjacent bolt holes	Facing Ø (mm)	Thick- ness (mm)
DN50	PN10/PN16	165	125	18	4	90	102	18
DN80	PN10/PN16	200	160	18	8	45	138	20
DN100	PN10/PN16	220	180	18	8	45	158	20
DN150	PN10/PN16	285	240	22	8	45	212	22
DN50	PN25/PN40	165	160	18	4	90	138	20
DN80	PN25/PN40	200	160	18	8	45	138	24
DN100	PN25/PN40	235	190	22	8	45	162	24
DN150	PN25/PN40	300	250	26	8	45	218	28

Raised Face Flange markings

Blind Flange Markings (Optional Manufacturer's Logo	Machinin	g Identi	fication		elded Assen dentification	
[optional]; Flange Standard; Nominal Size; Material; Heat Code)	Serial no.	Logo	Flange series	Flange series	Heat Code no.	Facing
Manufacturer's logo; EN 1092-1 05 'B1'; 'DN50' 'PN16' '1.4404 or 1.4435' A1B2C3	mmddyyxxx	*	xxxxx	XXXXX	A1B2C3	RF

When flange material is Alloy N06022/2.4602, additional material and heat code identification is provided.

The flange markings are located around the outside edge of the flange.


Serial number: a unique number allotted to each flange, including the date of

manufacture (MMDDYY) followed by a number from 001 to 999.

Flange series: the Siemens Milltronics drawing identification.

Heat code: a flange material batch code identification.

Flat Faced Flange

Flat Faced Flange Dimensions

NOTE: table continues on next page

Flange size	Flange Class	Flange O.D.	Bolt Hole Circle Ø	Bolt Hole Ø	No. of Bolt Holes	Thickness
2"	ASME 150 lb	6.0"	4.75"	0.75"	4	0.88"
3"	ASME 150 lb	7.5"	6.0"	0.75"	4	0.96"
4"	ASME 150 lb	9.0"	7.50"	0.75"	8	1.25"
2"	ASME 300 lb	6.50"	5.00"	0.75"	8	1.12"
3"	ASME 300 lb	8.25"	6.62"	0.88"	8	1.38"
4"	ASME 300 lb	10.00"	7.88"	0.88"	8	1.50"
DN50	EN PN16	165 mm	125 mm	18 mm	4	24.4 mm
DN80	EN PN16	200 mm	160 mm	18 mm	8	31.8 mm
DN100	EN PN16	220 mm	180 mm	18 mm	8	31.8 mm

Flange size	Flange Class	Flange O.D.	Bolt Hole Circle Ø	Bolt Hole Ø	No. of Bolt Holes	Thickness (cont'd)
DN50	EN PN40	165 mm	125 mm	18 mm	4	25.4 mm
DN80	EN PN40	200 mm	160 mm	18 mm	8	31.8 mm
DN100	EN PN40	235 mm	190 mm	22 mm	8	38.1 mm
50A	JIS 10K	155 mm	120 mm	19 mm	4	23.8 mm
80A	JIS 10K	185 mm	150 mm	19 mm	8	24.4 mm
100A	JIS 10K	210 mm	175 mm	19 mm	8	28.5 mm

Flange markings located around the outside edge of the flat faced flange identify the flange assembly on which the device is mounted.

Flat Faced Flange Markings

Rat Face Range Identification						Welded Assembly Identification		
Serial No.	Logo	Flange Series		Material	Heat	Flange	HeatCode	
		Series	Nomir	al Size	Wiaterial	Code	Series	No.
MMDDYYXXX	*	25556	2	150	316L/1.4404 or 316L/1.4435	A1B 2C3	25546	A1B2C3
			DN80	PN16			20046	AIDZUS

Serial number: a unique number allotted to each flange, including the date of manufacture

(MMDDYY) followed by a number from 001 to 999.

Flange series: the Siemens Milltronics drawing identification.

Nominal size: the flange size followed by the hole pattern for a particular flange class. For

example,

- a 2 inch ASME B 16.5 150 lb class flange (North America)

- a DN80 EN 1092-1 PN16 class flange (Europe).

Material: the basic flange material (AISI or EU material designation). North American

material codes are followed by European ones. For example, material

designation 316L/1.4404.

Heat code: a flange material batch code identification.

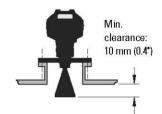
Installation

WARNINGS:

- Handle the device using the enclosure, not the antenna or the device tag, to avoid damage.
- Installation shall be performed only by qualified personnel and in accordance with local governing regulations.
- SITRANS LR250 is to be used only in the manner outlined in this manual, otherwise protection provided by the device may be impaired.
- Never attempt to loosen, remove, or disassemble process connection or instrument housing while vessel contents are under pressure.
- Materials of construction are chosen based on their chemical compatibility (or inertness) for general purposes. For exposure to specific environments, check with chemical compatibility charts before installing.
- The user is responsible for the selection of bolting and gasket materials which will fall within the limits of the flange and its intended use and which are suitable for the service conditions.
- Improper installation may result in loss of process pressure.

Notes:

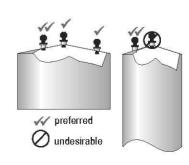
- For European Union and member countries, installation must be according to ETSI EN 302372.
- Refer to the device nameplate for approval information.
- The Process Device Tag shall remain with the process pressure boundary assembly¹⁾. In the event the instrument package is replaced, the Process Device Tag shall be transferred to the replacement unit.
- SITRANS LR250 units are hydrostatically tested, meeting or exceeding the requirements of the ASME Boiler and Pressure Vessel Code and the European Pressure Equipment Directive.
- The serial numbers stamped in each process connection body provide a unique identification number indicating date of manufacture.
 - Example: MMDDYY XXX (where MM = month, DD = day, YY = year, and XXX= sequential unit produced)
 - Further markings (space permitting) indicate flange configuration, size, pressure class, material, and material heat code.

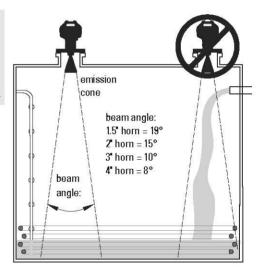

The process pressure boundary assembly comprises the components that act as a barrier against pressure loss from the process vessel: that is, the combination of process connection body and emitter, but normally excluding the electrical enclosure.

Pressure Equipment Directive, PED, 97/23/EC

Siemens Level Transmitters with flanged, threaded, or sanitary clamp type process mounts have no pressure-bearing housing of their own, and therefore do not come under the Pressure Equipment Directive as pressure or safety accessories (see EU Commission Guideline 1/8 and 1/20).

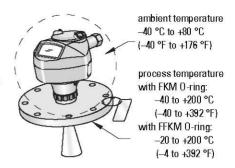
Nozzle design

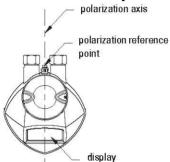

- The end of the horn must protrude a minimum of 10 mm (0.4") to avoid false echoes being reflected from the nozzle.
- An antenna extension: (100 mm/3.93") is available.



Nozzle location

Notes:


- Beam width depends on horn size: see below.
- For details on avoiding false echoes, see Auto False Echo Suppression (2.5.10.1.) on page 148.
 - Keep emission cone free of interference from ladders, pipes, I-beams or filling streams.
 - Beam angle is the width of the cone where the energy density is half of the peak energy density.
 - Peak energy density is directly in front of and in line with the antenna.
 - Signal is transmitted outside the beam angle; therefore false targets may be detected.
 - Avoid central locations on tall, narrow vessels.


Nozzle location (continued)

- Provide easy access for viewing the display and programming via the hand programmer.
- Provide an environment suitable to the housing rating and materials of construction.
- Provide a sunshield if the instrument will be mounted in direct sunlight.

Orientation in a vessel with obstructions

Polarization reference point

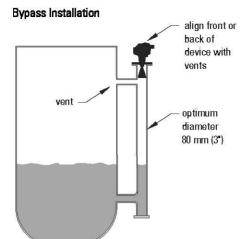
For best results on a vessel with obstructions, or a stillpipe with openings, orient the front or back of the device toward the obstructions (see *Mounting on a Stillpipe or Bypass Pipe* on page 20 for an illustration.)

Mounting on a Stillpipe or Bypass Pipe

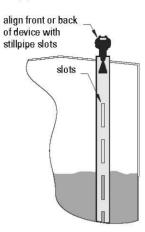
A stillpipe or bypass is used for products with a low dK^{1} , or when vortex or extremely turbulent conditions exist. It can also be used to provide optimum signal conditions on foaming materials.

Stillpipe or Bypass Pipe requirements

- The pipe diameter must be matched with the horn size. Use the largest horn size
 that will fit the stillpipe/bypass pipe (see Threaded Horn dimensions on page 11 or
 Flanged Horn dimensions on page 14).
- Suitable pipe diameters: 40 mm (1.5") to 100 mm (4").


[Not recommended: 152.4 mm (6") or 203.2 mm (8")]

- One continuous length of metallic pipe is preferred, without joints (to avoid false echoes).
- Joints (if unavoidable) must be machined to ± 0.25 mm (± 0.010") and must have a
 welded connecting sleeve on the outside
- Bypass vent is required at the upper end of the bypass²⁾


See Dielectric constant of material measured on page 7.

To equalize pressure and keep the liquid level in the bypass constant with the liquid level in the vessel.

Device orientation

Stillpipe Installation

Installation Instructions

WARNING: For pressure applications, it will be necessary to use PTFE tape or other appropriate thread sealing compound, and to tighten the process connection beyond hand-tight.

Notes:

- There is no limit to the number of times a device can be rotated without damage.
- When mounting, orient the front or back of the device towards the closest wall.
- Do not rotate the enclosure after programming and vessel calibration, otherwise an error may occur, caused by a polarity shift of the transmit pulse.

Threaded Version

- Before inserting the device into its mounting connection, check to ensure the threads are matching, to avoid damaging them.
- Simply screw the device into the process connection, and hand tighten, or use a wrench. A torque of 40 N m (30 ft.lbs) is recommended.

Flanged Version

See Flanged Horn dimensions on page 14, Raised Face Flange per EN 1092-1 on page 14, and Flat Faced Flange on page 16 for dimensions.

Power

WARNINGS:

The DC input terminals shall be supplied from a source providing electrical isolation between the input and output, in order to meet the applicable safety requirements of IEC 61010-1.



All field wiring must have insulation suitable for rated voltages.

Connecting SITRANS LR250

WARNINGS:

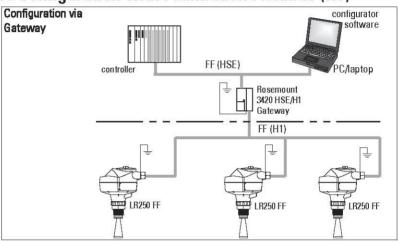
- Check the nameplate on your instrument, to verify the approval rating.
- Use appropriate conduit seals to maintain IP or NEMA rating.
- See Wiring Setups for hazardous area installations on page 24.

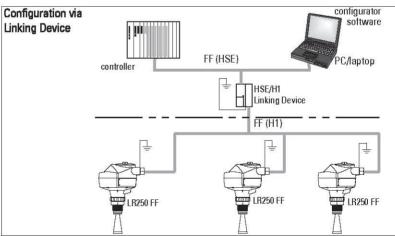
- Strip the cable jacket for approximately 70 mm (2.75") from the end of the Foundation Fieldbus cable, and thread the wires through the gland²⁾.
- Connect the wires to the terminals as shown below (SITRANS LR250 is not polarity sensitive).
- 3. Ground the instrument according to local regulations⁴⁾.

May be shipped with device.

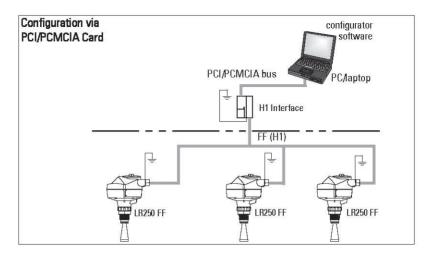
²⁾ If cable is routed through conduit, use only approved suitable-size hubs for waterproof applications.

³⁾ The instrument shield connection is internally connected to the external ground lug.


For optimum EMC protection, it is recommended that the FF H1 cable shield be connected to ground at every node.

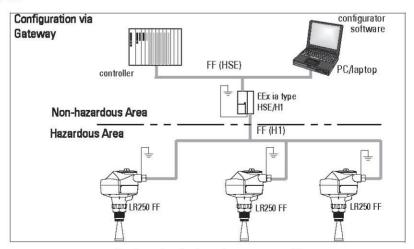

- 4. Tighten the gland to form a good seal.
- Close the lid and secure the locking ring before programming and instrument configuration.

Notes:


- Foundation Fieldbus (H1) must be terminated at both extreme ends of the cable for it to work properly.
- Please refer to the Foundation Fieldbus System Engineering Guidelines (AG-181)
 Revision 2.0, available from www.fieldbus.org, for information on installing FF (H1)
 devices.

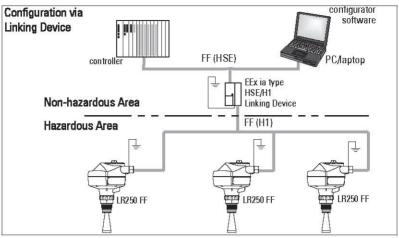
Basic Configuration with Foundation Fieldbus (H1)

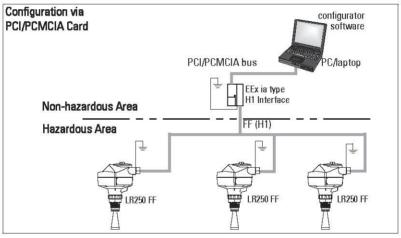
Basic Configuration cont'd on next page.


Wiring Setups for hazardous area installations

There are three wiring options for hazardous area installations:

- Intrinsically Safe wiring on page 26
- Non-Sparking-Energy Limited wiring on page 28
- Non-incendive wiring (only for USA/Canada) on page 28


In all cases, check the nameplate on your instrument, and confirm the approval rating.


Configuration with Foundation Fieldbus for hazardous areas

Configuration for hazardous areas contd on next page.

Configuration for hazardous areas contd.

1. Intrinsically Safe wiring

Device nameplate (ATEX/IECEx/C-TICK)

SIEMENS

SITRANS LR250

Milloror second s

The ATEX certificates listed on the nameplate / can be downloaded from the product page of our website at: www.siemens.com/LR250. Go to More Info > Certificates.

The IECEx certificate listed on the nameplate can be viewed on the IECEx website. Go to: http://iecex.iec.ch Ex Equipment Certificates of Conformity and enter the certificate number IECEx SIR 09.0148X.

Device nameplate (FM/CSA)

The FM/CSA Intrinsically Safe connection drawing number **A5E02358161** can be downloaded from the product page of our website at www.siemens.com/LR250.

Go to More Info > Installation Drawings > Level Measurement > SITRANS LR250.

- For wiring requirements: follow local regulations.
- Approved dust-tight and water-tight conduit seals are required for outdoor NEMA 4X / type 4X / NEMA 6, IP67, IP68 locations.
- Refer to Instructions specific to hazardous area installations on page 29.

Under the entity evaluation concept. SITRANS LR250 has the following characteristics:

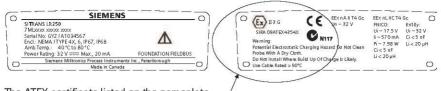
(input voltage) U _i	= 24 V
(input current) I _i	= 250 mA
(input power) P _i	= 1.2 W
(internal capacitance) Ci	= 0
(internal inductance) Li	= 0

Entity Concept:

The Entity Concept allows interconnection of Intrinsically Safe apparatus to associated apparatus not specifically examined in such combination. The criteria for interconnection is that the voltage and current which Intrinsically Safe apparatus can receive and remain Intrinsically Safe, considering faults, must be equal to or greater than the output voltage (Uo) and output current (Io) levels which can be delivered by the associated apparatus, considering faults and applicable factors. In addition, the maximum unprotected capacitance (Ci) and Inductance (Li) of the Intrinsically Safe apparatus, including interconnecting wiring, must be equal to or less than the capacitance and inductance which can be safely connected to associated apparatus.

FISCO Concept

Under the FISCO evaluation concept, SITRANS LR250 has the following characteristics:


(input voltage) U _i	= 17.5 V
(input current) Ii	= 380 mA
(input power) P _i	= 5.32 W
(internal capacitance) Ci	= 0
(internal inductance) Li	= 0

Note: For complete details and instructions regarding the FISCO Concept The FM/CSA connection drawing number A5E02358161 can be downloaded from the product page of our website at: www.siemens.com/LR250. Go to More Info > Installation Drawings > Level Measurement > SITRANS LR250.

The FISCO Concept allows interconnection of Intrinsically Safe apparatus to associated apparatus not specifically examined in such combination. The criteria for interconnection is that the voltage (Ui or Vmax), the current (Ii, or Imax) and the power (Pi, or Pmax) which Intrinsically Safe apparatus can receive and remain Intrinsically Safe, considering faults, must be equal to or greater than the voltage (Uo or Voc or Vi), the current (Io or Isc or Ii), and the power (Po or Pmax) levels which can be delivered by the associated apparatus, considering faults and applicable factors. In addition, the maximum unprotected capacitance (Ci) and inductance (Li) of each apparatus (other than the termination) connected to the fieldbus must be less than or equal to 5 nF and 10 µH respectively.

In each segment only one active device, normally the associated apparatus, is allowed to provide the necessary energy for the fieldbus system. The allowed voltage Uo (or Voc or Vt) of the associated apparatus is limited to the range of 14V dc to 24V dc. All other equipment connected to the bus cable has to be passive, meaning that they are not allowed to provide energy to the system, except for a leakage current of 50 μA for each connected device. Separately powered equipment needs a galvanic isolation to assure that the Intrinsically Safe fieldbus circuit remains passive.

2. Non-Sparking-Energy Limited wiring

The ATEX certificate listed on the nameplate

can be downloaded from the product page of our website at: www.siemens.com/LR250.

Go to More Info > Installation Drawings > Level Measurement > SITRANS LR250.

- For wiring requirements: follow local regulations.
- Approved dust-tight and water-tight conduit seals are required for outdoor NEMA 4X / type 4X / NEMA 6, IP67, IP68 locations.

3. Non-incendive wiring (only for USA/Canada)

FM/CSA Class 1, Div 2 connection drawing number 23650673 can be downloaded from the product page of our website at: www.siemens.com/LR250. Go to More Info > Installation Drawings > Level Measurement > SITRANS LR250.

- For wiring requirements: follow local regulations.
- Approved dust-tight and water-tight conduit seals are required for outdoor NEMA 4X / type 4X / NEMA 6, IP67, IP68 locations.
- Refer to Instructions specific to hazardous area installations on page 29.

MITIM

Instructions specific to hazardous area installations

(Reference European ATEX Directive 94/9/EC, Annex II, 1/0/6)

The following instructions apply to equipment covered by certificate number SIRA 09ATEX2353X and 09ATEX4354X:

- For use and assembly, refer to the main instructions.
- The equipment is certified for use as Category 1GD equipment per SIRA 09ATEX2353X certificate and as Category 3G per SIRA 09ATEX4354X certificate.
- 3. The equipment may be used with flammable gases and vapors with apparatus group IIC, IIB and IIA and temperature classes T1, T2, T3 and T4.
- 4. The equipment has a degree of ingress protection of IP67 and a temperature class of T90 °C and may be used with flammable dusts.
- 5. The equipment is certified for use in an ambient temperature range of –40 $^{\circ}$ C to $^{+80}$ $^{\circ}$ C.
- The equipment has not been assessed as a safety related device (as referred to by Directive 94/9/EC Annex II. clause 15).
- Installation and inspection of this equipment shall be carried out by suitably trained
 personnel in accordance with the applicable code of practice (EN 60079-14 and
 EN 60079-17 in Europe).
- 8. The equipment is non-repairable.
- The certificate numbers have an 'X' suffix, which indicates that special conditions for safe use apply. Those installing or inspecting this equipment must have access to the certificates
- 10. If the equipment is likely to come into contact with aggressive substances, then it is the responsibility of the user to take suitable precautions that prevent it from being adversely affected, thus ensuring that the type of protection is not compromised.

Aggressive substances: e.g. acidic liquids or gases that may attack metals, or solvents that may affect polymeric materials.

Suitable precautions: e.g. establishing from the material's data sheet that it is resistant to specific chemicals.

Quick Start

SITRANS LR250 carries out its level measurement tasks according to settings made via parameters. The settings can be modified locally via the Local User Interface (LUI) which consists of an LCD display and a handheld programmer.

A Quick Start Wizard provides an easy step-by-step procedure to help you configure the device for a simple application. There are two ways to access the wizard:

- locally (See Quick Start Wizard via the handheld programmer on page 36)
- from a remote location (See Quick Start Wizard via AMS Device Manager on page 45)

For more complex setups see *Appendix E*: *Application Examples on page 156*, and for the complete range of parameters see *Parameter Reference (LUI) on page 96*.

Activating SITRANS LR250

Out of the box, SITRANS LR250 will not begin measurements, and all blocks will be **Out of Service** until the device has been configured via the local user interface (LUI), or a remote configuration tool.

(If the SITRANS LR250 FF is to be used in an FF application, configure using a network configuration tool, such as DeltaV or NI-FBUS Configurator. See *Quick Start Wizard via AMS Device Manager on page 45*)

Follow these steps to configure the device via the LUI:

- Power up the instrument
- The LCD at startup will show LANGUAGE. Edit or cancel this selection. When complete, the device will show QUICK START.
- Complete the Quick Start Wizard (see Quick Start Wizard via the handheld programmer on page 36). Completing the Quick Start Wizard or writing any parameter via the LUI causes the device to begin measuring.
 The Resource Block (RES) and Level Transducer Block (LTB) will move to Automatic mode
- AIFB 1 and AIFB 2 will remain Out of Service (as displayed on the LCD). These blocks can only be configured and scheduled using a network configuration tool. For more details, see System Integration in manual Foundation Fieldbus for Level Instruments (7 ML19985MP01).

Note: The last step of the Quick Start run from the LUI will place the RESOURCE block in *Automatic* mode.

The LCD Display

Press **Mode** to toggle between Measurement and Program Mode.

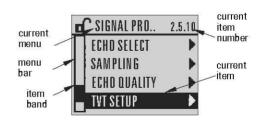
Measurement mode

Normal operation

- 1 toggle indicator¹⁾ to switch between AIFB 1/ AIFB 2 (displayed as FB1/FB2)
- 2 identifies which block is source of displayed value
- 3 measured value (level, space, distance, or volume)
- 4 units
- 5 bar graph indicates level
- 6 secondary region indicates on request²⁾ electronics temperature, echo confidence, or distance
- 7 text area displays status messages
- 8 device status indicator.
- Press UP or DOWN arrow to switch.
- In response to a key press request. For details, see *Programming SITRANS LR250* on page 33.

Fault present

S: 0 LOE


7 - text area displays a fault code and an error message

8 - service required icon appears

PROGRAM mode display

Navigation view

- A visible menu bar indicates the menu list is too long to display all items.
- A band halfway down the menu bar indicates the current item is halfway down the list.

- The depth and relative position of the item band on the menu bar indicates the length of the menu list, and approximate position of the current item in the list.
- A deeper band indicates fewer items.

Parameter view

parameter name PHEVIOUS BACK FDII NEXT parameter number parameter value/ selection

Edit view

LEVEL UNIT	2.3.2
ं हा	
⊗ %	

Handheld Programmer

(Part No. 7ML1930-1BK)

The programmer is ordered separately.

Key functions in Measurement mode

Кеу	Function	Result
6	Updates internal enclosure temperature reading.	
8	Updates echo confi- dence value.	New value is displayed in LCD secondary region.
()	Updates distance measurement.	
	Mode opens PRO- GRAM mode.	Opens the menu level last displayed in this power cycle, unless power has been cycled since exiting PROGRAM mode or more than 10 minutes have elapsed since PRO-GRAM mode was used. Then top level menu will be displayed.
•	RIGHT arrow opens PROGRAM mode.	Opens the top level menu.
*	UP or DOWN arrow toggles between AIFB 1 and AIFB 2.	Identifies which AIFB is the source of the displayed value.

Programming SITRANS LR250

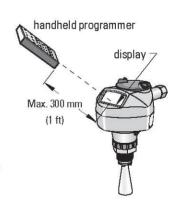
Notes:

- While the device is in PROGRAM mode the output remains active and continues to respond to changes in the device.
- SITRANS LR250 automatically returns to Measurement mode after a period of inactivity in PROGRAM mode (between 15 seconds and 10 minutes, depending on the menu level).

Change parameter settings and set operating conditions to suit your specific application. (For remote operation see *Operating via AMS Device Manager on page 40*.)

Parameter menus

Note: For the complete list of parameters with instructions, see *Parameter Reference* (LUI) on page 96.


Parameters are identified by name and organized into function groups, then arranged in a 5-level menu structure (see *LCD Menu Structure on page 169*).

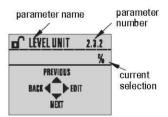
2.4. LINEARIZATION
2.4.1. VOLUME
2.4.1.1.VESSEL SHAPE

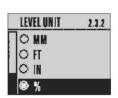
1. Enter PROGRAM mode

- Point the programmer at the display (from a maximum distance of 300 mm [1 ft]).
- RIGHT arrow activates PROGRAM mode and opens menu level 1.
- Mode opens the menu level last displayed in PROGRAM mode within the last 10 minutes, or menu level 1 if power has been cycled since then.

2. Navigating: key functions in Navigation mode

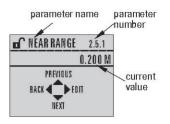
Notes:

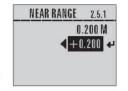

- In Navigation mode ARROW keys move to the next menu item in the direction of the arrow.
- For Quick Access to parameters via the handheld programmer, press Home (1), then enter the menu number. For example, to access parameter 2.4.1. Volume, press 2.4.1


Кеу	Name	Menu level	Function
A V	UP or DOWN arrow	menu or parameter	Scroll to previous or next menu or parameter.
→	RIGHT	menu	Go to first parameter in the selected menu, or open next menu.
	arrow	parameter	Open Edit mode.
•	LEFT arrow	menu or parameter	Open parent menu.
	Mode	menu or parameter	Change to MEASUREMENT mode.
	Home	menu or parameter	Open top level menu: menu 1.

3. Editing in PROGRAM mode

Selecting a listed option


- a) Navigate to the desired parameter.
- Press RIGHT arrow to open parameter view.
- Press RIGHT arrow again to open Edit mode. The current selection is highlighted.
 Scroll to a new selection.
- d) Press RIGHT arrow to accept it. The LCD returns to parameter view and displays the new selection.



Changing a numeric value

- a) Navigate to the desired parameter.
- b) Press **RIGHT arrow** to open parameter view. The current value is displayed.
- c) Press **RIGHT arrow** again to open **Edit** mode. The current value is highlighted.
- d) Key in a new value.
- e) Press **RIGHT arrow** to accept it. The LCD returns to parameter view and displays the new selection.

Key functions in Edit mode

Key	Name	Function	
	UP or	Selecting options	Scrolls to item.
	апом	Numeric editing	- Increments or decrements digits - Toggles plus and minus sign
	RIGHT	Selecting options	- Accepts the data (writes the parameter) - Changes from Edit to Navigation mode
	arrow	Numeric editing	- Moves cursor one space to the right - or with cursor on Enter sign, accepts the data and changes from Edit to Navigation mode
	LEFT	Selecting options	Cancels Edit mode without changing the parameter
	arrow	Numeric editing	Moves cursor to plus/minus sign if this is the first key pressed or moves cursor one space to the left or with cursor on Enter sign, cancels the entry.
C	Clear	Numeric editing	Erases the display.
	Decimal point	Numeric editing	- Enters a decimal point - Captures the current path [see Secondary Value (4.11.)]
7+	Plus or minus sign	Numeric editing	Changes the sign of the entered value.
0 to 9	Numeral	Numeric editing	Enters the corresponding character.

Quick Start Wizard via the handheld programmer

Notes:

- Default settings in the Quick Start Wizard are indicated with an asterisk (*) unless
 explicitly stated.
- When using the handheld programmer, the Quick Start wizard settings are interrelated and changes apply only after you select FINISH in Wizard Complete.
- Do not use the Quick Start wizard to modify individual parameters: see instead
 Parameter Reference (LUI) on page 96. (Perform customization only after the Quick
 Start has been completed.)

1. Quick Start

- a. Point the programmer at the display [from a maximum distance of 300 mm (1 ft)],
 then press RIGHT arrow to activate PROGRAM mode and open menu level 1.
- b. Press **RIGHT arrow** twice to navigate to menu item 1.1 and **DOWN arrow** to enter the Quick Start Wizard.
- c. Press **RIGHT arrow** to open **Edit** mode or **DOWN arrow** to accept default values and move directly to the next item.
- d. To change a setting, scroll to the desired item or key in a new value.
- After modifying a value, press RIGHT arrow to accept it and press DOWN arrow to move to the next item.
- f. Quick Start settings take effect only after you select Finish in Wizard Complete.

1.1. Quick Start Wizard

Introduction

Note: The introduction screen is displayed only on the device when using the handheld programmer. This screen is not part of the Quick Start Wizard when using AMS Device Manager.

Introduction to Quick Start Wizard showing purpose of wizard: to setup common applications easily.

Options	CANCEL, NEXT
---------	--------------

Language

Selects the language to be used on the LCD and takes effect immediately.

	*	ENGLISH
		DEUTSCH
Options		FRANCAIS
Options		ESPANOL
		简体中文

Material

Selects the appropriate echo processing algorithms for the material (see Position Detect (25.7.2.) on page 146 for more detail).

vali dav	*	LIQUID
Options		LIQUID LOW DK (low dielectric liquid – CLEF <i>algorithm</i> enabled)

Response Rate

Sets the reaction speed of the device to measurement changes in the target range.

		Response Rate (2.3.8.1.)	Fill Rate per Minute (2.3.8.2.)/Empty Rate per Minute (2.3.8.3.)	
Options	*	SLOW	0.1 m/min (0.32 ft/min)	
		MED	1.0 m/min (3.28 ft/min)	
		FAST	10.0 m/min (32.8 ft/min)	

Use a setting just faster than the maximum filling or emptying rate (whichever is greater).

Units

Sensor measurement units.

Options	M, CM, MM, FT, IN	
Options	Default: M	

Low Calibration Point

Distance from Sensor Reference to Low Calibration Point: usually process empty level. (See Calibration 2.3.7. on page 99 for an illustration.)

Values	Range: 0.0000 to 30.000 m
Values	Default: 20.000 m

High Calibration Point

Distance from Sensor Reference to High Calibration Point usually process full level. (See Calibration 2.3.7. on page 99 for an illustration.)

Values	Range: 0.0000 to 30.000 m
Values	Default: 0.000 m

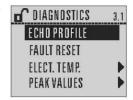
Wizard Complete

Note: Wizard Complete is only displayed on the device when using the handheld programmer. This step is not part of the Quick Start Wizard when using AMS Device Manager.)

In order to save the Quick Start settings it is necessary to select FINISH to apply changes.

Options	BACK, CANCEL, FINISH (Display returns to 1.1 Quick Start Wizard menu
Options	when Quick Start is successfully completed.)

Press **Mode** to return to Measurement mode. The Level Transducer Block (LTB) will now be operational. To view a measurement reading over the network, one of the Analog Input Function Blocks (AIFB) will need to be setup and scheduled using a network configuration software tool.


Auto False Echo Suppression

If you have a vessel with known obstructions, we recommend using Auto False Echo Suppression to prevent false echo detection. See **TVT (Auto False Echo Suppression) Setup (25.10.)** for instructions.

This feature can also be used if SITRANS LR250 displays a false high level, or the reading is fluctuating between the correct level and a false high level.

Requesting an Echo Profile

- In PROGRAM mode, navigate to: Level Meter > Diagnostics (3.) > Echo Profile (3.1.)
- Press RIGHT arrow > to request a profile.

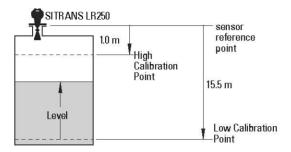
- UP/DOWN arrows are dedicated to scrolling through the icons.
- The selected icon is highlighted.
- Press UP arrow to select
 Measure and RIGHT
 arrow to update the profile.
- algorithm: F confidence ✓ distance **-**pan right/left D·4 25 pan up/down echo crosshairs distance -zoom in/out TVT -measure -exit crosshairs exit icon selected / deselected highlighted
- Press DOWN arrow to select Exit then press RIGHT arrow to return to the previous menu.

Device Address

Note: The address can only be changed from a remote master such as NI-FBUS Configurator or DeltaV. See **Addressing** in manual *Foundation Fieldbus for Level Instruments* (7ML19985MP01) for further details.

Read only. The unique address of the device on the network.

	Temporary range during initial commissioning: 248 - 251. Permanent range after commissioning complete (written to non-volatile memory in the device): 16-247
--	---


- In PROGRAM mode, navigate to: Level Meter > Communication (5.) > Device Address (5.2) to view the device address.
- Press Mode to return to Measurement mode.

Level application example

The application is a vessel that takes an average 3 hours (180 minutes) to fill and 3 weeks to empty.

Fill rate = 0.08 m/minute [(Low Cal Pt. minus High Cal Pt.) / fastest of fill or empty time] = (15.5 m - 1 m) / 180 min.

= 14.5 m /180 min. = 0.08 m/min.

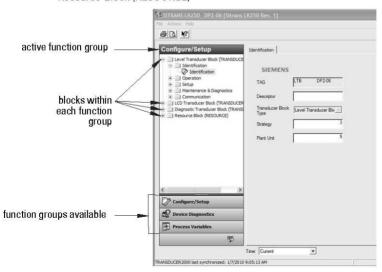
Quick Start Parameter	Setting	Description
Material	LIQUID	
Response Rate	SLOW	Resets Fill Rate and Empty Rate to 0.1 m/minute.
Units	M	
Low Calibration Point	15.5	Process empty level.
High Calibration Point	1.0	Process full level.
Wizard Complete	FINISH	Save new settings and exit Wizard

Operating via AMS Device Manager

AMS Device Manager is a software package used to commission and maintain SITRANS LR250 and other process devices. Please consult the operating instructions or online help for details on using AMS Device Manager. (You can find more information at http://www.emersonprocess.com/AMS/.)

Functions in AMS Device Manager

Note: Do not use the handheld programmer at the same time as AMS Device Manager, or erratic operation may result. (To disable operation via the handheld programmer, see *Local Operation on page 130*.)


AMS Device Manager can be used to monitor the process values, alarms and status signals of the device. It allows you to display, compare, adjust, verify, and simulate process device data

Configuration and monitoring of the device is completed via parameters organized into three main function groups:

- Configure/Setup
- Device Diagnostics (read only)
- Process Variables (read only)

Each function group is further divided into four blocks:

- Level Transducer Block (LTB)
- Liquid Crystal Display Block (LCD)
- Diagnostic Block (DIAG)
- Resource Block (RESOURCE)

In general, process parameters are accessed through the Level Transducer Block, and device parameters are accessed through the Resource Block.

See AMS Menu Structure on page 82 for a chart, and Changing parameter settings using AMS Device Manager on page 49 for more details.

Key Features of AMS Device Manager Rev. 9.0

The graphic interface in SITRANS LR250 makes monitoring and adjustments easy.

CONFIGUE	RE/SETUP function group)	
Block	Feature I	Page	Function
LTB	Echo Profile	58	Echo profile viewing
LTB	TVT (time varying threshold) 56	Screen out false echoes
LTB	Linearization (LTB)	53	Volume measurement in an irregular vessel
LTB	Maintenance & Diagnostics (LTB)	s 59	Set schedules and reminders for sensor maintenance and service
RESOURCE	Quick Start Wizard via AMS Device Manager	S 45	Device configuration for simple applications
RESOURCE	Maintenance & Diagnostics (RESOURCE)	69	Set schedules and reminders for device maintenance and calibration
RESOURCE	Security (RESOURCE)	72	Protect security and communication parameters from modification by the maintenance user

DEVICE DI	AGNOSTICS function (jroup	
Block	Feature	Page	Function
LTB	Alarms & Errors (LTB)	73	Monitor process errors and alarms
RESOURCE	Alarms & Errors (RESOUR	RCE) 77	Monitor device errors and alarms

PROCESS	VARIABLES function g	roup	
Block	Feature	Page	Function
LTB	Process Variables (Level ducer Block-LTB)	Trans- 79	Monitor process variables and level trend

Pull-down menu access

Action menu items

SITRANS LR250 DP2-06 [stravs LR250 Rev. 1]

File Action #eip
Configue fortup
Compute
Compute
Device Dapportics
Process Variables
Scan Perior
Sc

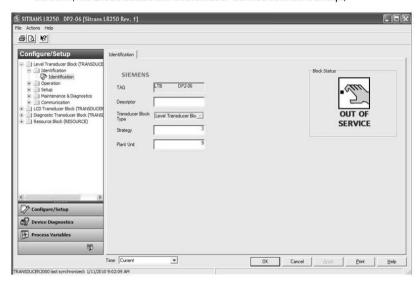
A pull-down menu under **Actions** gives alternative access to several features.

Adding a new device Electronic Device Description (EDD)

Note: SITRANS LR250 requires the EDD for AMS Device Manager version 9.0.

Check the product page of our website at: www.siemens.com/LR250, under **Downloads**, for the latest version of EDD: SITRANS LR250 FF - Foundation Fieldbus - AMS V9.0.

- Check that you have the latest version of the EDD for AMS Device Manager that
 matches the firmware revision of your device (see Firmware Revision on page 66),
 and if necessary download it from the product page listed above. Save the files to
 your computer, and extract the zipped file to an easily accessed location.
- Launch AMS Device Manager Add Device Type, browse to the unzipped EDD file and select it.
- The device is shipped with a unique tag, consisting of a manufacturer id and serial number. The device tag can only be read from the device. It is not necessary to change the device tag to make the device operational, however if you wish to change it use AMS Device Manager.

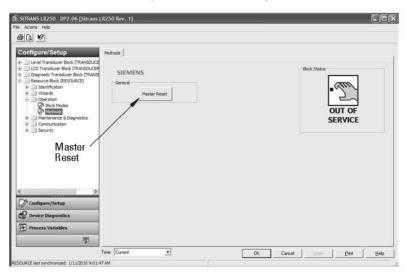

Set Device Tag via AMS Device Manager:

- a) Launch AMS Device Manager AMS Device Manager.
- From the Device Connection View, right click on the FF Network icon and select Rebuild Hierarchy.
- c) Right click on the device icon, and choose Rename from the menu.
- Enter a device tag and press Enter.

Note: The Device Tag described above is separate from the Tag that describes each block type (as shown in the *Identification* folder of each block).

Startup

- Launch AMS Device Manager AMS Device Manager. (If AMS already running, go to step 4.
- From the Device Connection View, right click on the FF Network icon and select Rebuild Hierarchy.
- Double-click the device icon to open the startup screen. The startup screen shows
 device identification details, and a navigation window on the left-hand side of the
 screen. (The Block Status will show Out of Service at initial startup.)



Next, complete a master reset.

Master Reset

A master reset is recommended before first configuring a new device. (Block Status must be Out of Service to perform a Master Reset.)

- Navigate to Configure/Setup > Resource > Operation > Methods and click to open the dialog window.
- In the General field, click on Master Reset and click Next to perform reset to factory defaults. Click Next to accept default reset to Factory Defaults.

3. Click FINISH then restart AMS to reload settings. Next, scan the device.

Scan Device

Scan Device uploads parameters from the device (synchronizes parameters) to AMS Device Manager.

- Open the pull-down menu Actions Scan Device (upload parameters from the device to AMS).
- The next step when adding a new device is to configure and calibrate the device via the Quick Start Wizard

Sensor calibration

The LR250 FF does not need to be calibrated, only configured using the Quick Start Wizard below.

Configuring a new device

Configure a new device using the Quick Start Wizard, found in the **Resource Block** of the function group **Configure/Setup**.

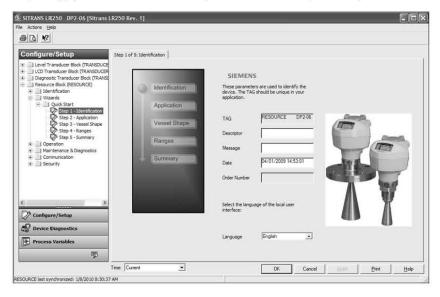
Quick Start Wizard via AMS Device Manager

The Quick Start Wizard groups together all the settings you need to configure a device for most applications.

Please consult the operating instructions or online help for details on using AMS Device Manager.

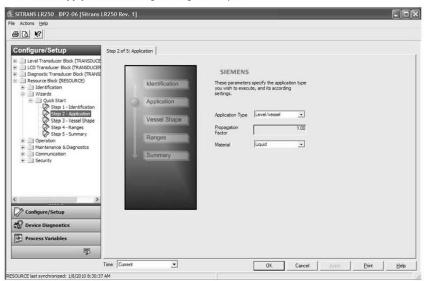
Note: Use Quick Start Wizard via AMS Device Manager for initial configuration of a device on an FF network. If device is not on an FF network, initial configuration should be completed via the Quick Start Wizard from the LUI. (See *Quick Start* on page 30.)

Quick Start Wizard steps


Notes:

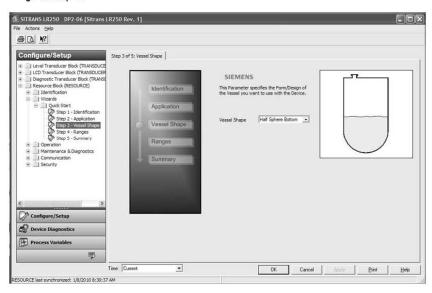
- Complete the steps in order. Click on Apply after revising parameters in each step, or CANCEL to exit step without saving changes. (Note: Apply will write changes to the device. OK will write changes to the device and exit to the Device Connection View. CANCEL will exit to the Device Connection View without applying changes.)
- Do not use the Quick Start Wizard to modify individual parameters: see instead
 Changing parameter settings using AMS Device Manager on page 49. (Perform
 customization only after the Quick Start has been completed.)
- Values set using the Quick Start Wizard via AMS Device Manager are saved and recalled each time it is initiated (unlike the Quick Start Wizard initiated via the handheld programmer).
- To run the Quick Start Wizard for this device, the RESOURCE block must first be set to Out of Service (OOS) mode, before any configuration changes (changes to parameters affecting block output) can be written. (Setting RESOURCE block to OOS also sets LTB to OOS.)
- After completing steps 1-4, review all settings in Step 5 Summary. Return to steps1-4 if further changes are required.
- After completing the Quick Start Wizard from AMS, you must manually place the RESOURCE block in Automatic mode.

Launch AMS Device Manager and double-click the device icon from the Device Connection View to open the startup screen. Navigate to Configure/Setup > Resource Block > Wizards > Quick Start, and click on Step 1 - Identification.

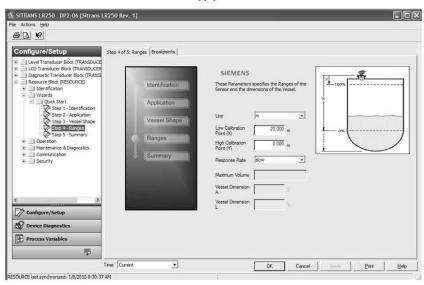

Step 1 - Identification

You can accept the default values without modification. (**Descriptor, Message**, and Installation **Date** fields can be left blank.) If desired, make changes then click on **Apply**. (The **Apply** button is activated when a parameter is modified.) Go to Step 2.

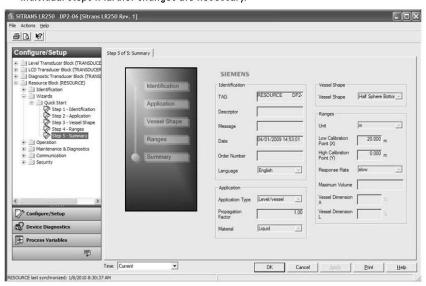
Step 2 – Application Type


Click on **Step 2 - Application Type** in the navigation window. Select the Application Type (level or volume), Propagation Factor (if using a stillpipe application), and the Material¹. Click on **Apply** to save settings then go to Step 3.

¹ For a Low Dialectric Liquid application in a stilling well, see example Application with Stillpipe on page 158.


Step 3 - Vessel Shape

Click on **Step 3 - Vessel Shape** in the navigation window. Select the vessel shape. To describe a more complex shape, select **Linearization Table** in the Vessel Shape field and see *Linearization (LTB) on page 53* for more details. Click on **Apply** to save settings then go to Step 4.


Step 4 - Ranges

Click on **Step 4 - Ranges** in the navigation window. On the tab Step 4 of 5 Ranges: set the parameters, and click on **Apply** to save settings. If necessary, click on the Breakpoints tab, set the parameters, and click on **Apply** to save settings. Go to Step 5.

Step 5 - Summary

Click on **Step 5 - Summary** in the navigation window. Check parameter settings. Return to individual steps if further changes are necessary.

The Quick Start Wizard is now complete.

Changing parameter settings using AMS Device Manager

Notes:

- For a complete list of parameters, see Parameter Reference (LUI) on page 96.
- For more detailed explanations of the parameters listed below see the pages referenced.
- Adjust parameter values in the parameter value field in Configure/Setup view, then click on Apply to write the new values to the device. The parameter field will display in yellow until the value has been written to the device.
- 2) Click on **DK** only if you wish to update all parameters and exit device view.

Configure/Setup (Level Transducer Block-LTB)

Identification (LTB)

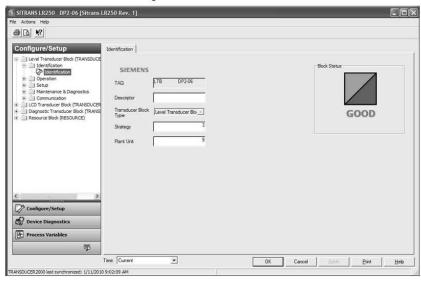
Navigate to Configure/Setup > LTB > Identification.

Identification:

TAG

Read only. Description for the associated block: device tag prefixed by block type.

- Descriptor (see Descriptor on page 97)
- Transducer Block Type


Read only. Identifies the type of transducer block.

Strategy

Used to identify grouping of blocks.

Plant Unit

The identification number of the plant unit. For example, can be used in the host for sorting alarms.

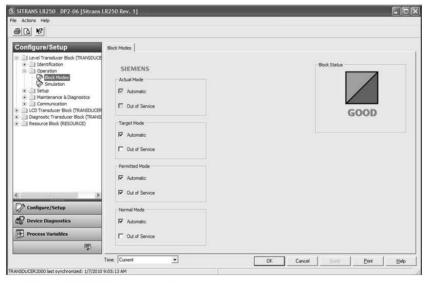
Operation (LTB)

Navigate to Configure/Setup > LTB > Operation.

Click on Block Modes to open the dialog window for access to:

Block Modes:

Actual Mode (read only)


This is the current mode of the block, which may differ from the target based on operating conditions. Its value is calculated as part of the block execution.

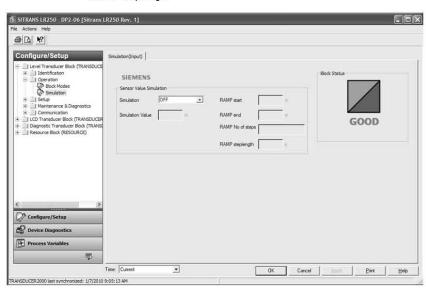
- Target Mode (see 2.6.2. Mode on page 113)
- Permitted Mode

Defines the modes that are allowed for an instance of the block. The permitted mode is configured based on application requirements.

Normal Mode

This is the mode that the block should be set to during normal operating conditions.

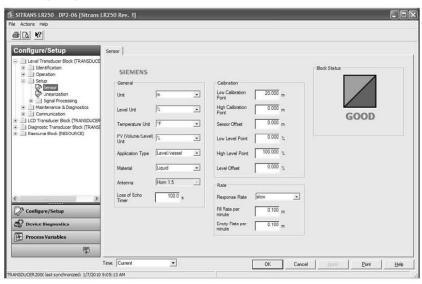
Click on Simulation to open the dialog window for access to:


Simulation (Input)

Allows you to simulate the sensor value which is input to the Level Transducer Block. This tests everything between the Level Transducer Block and Output

Note: To activate simulation via AMS Device Manager or the 375 Field Communicator, simulation must also be set to Enabled on the device. See *4.12. Simulate Enable* on page 128.

- Simulation
- Simulation Value
- BAMP start
- RAMP end
- · RAMP No of steps


RAMP steplength

- a) To enable simulation select **Fixed value** or **Ramp** in the Simulation field.
- b) If you select Fixed value, enter a Simulation Value.
- If you select Ramp, enter the ramp start, end, number of steps, and steplength.
- d) Click Apply.
- e) After simulation is complete, set Simulation to DFF and click Apply.

Setup (LTB)

Sensor (LTB)

Navigate to Configure/Setup > LTB > Setup and click on Sensor for access to:

General

[see Sensor (2.3.) on page 97]

- Unit (see 2.3.1. Unit on page 97)
- Level Unit (see 23.2. Level Unit on page 98)
- Temperature Unit (see 2.3.4. Temperature Units on page 98)
- PV (Volume/Level) Unit (see 23.3. PV (volume/level) Units on page 98).
- Application Type (available only via AMS Device Manager)
 Defines the application type.

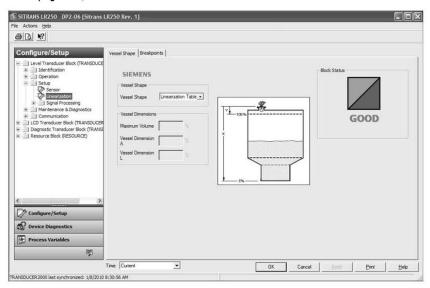
*	Level/vessel (default)	
	Level/stillpipe	
Values	Level/bypass pipe	
values	Volume/vessel	
	Volume/stillpipe	
	Volume/bypass pipe	

- Material (see 2.3.5 Material on page 98)
- Antenna (see 23.7.7, Antenna on page 100)
- Loss of Echo Timer (see 2.3.6. Loss of Echo (LOE) Timer on page 99)

Calibration

[see Calibration (2.3.7.) on page 99 for details]

- Low Calibration Point (see 2.3.7.1. Low Calibration Point on page 99)
- High Calibration Point (see 2.3.7.2. High Calibration Point on page 99)
- Sensor Offset (see 2.3.7.3. Sensor Offset on page 99)
- Low Level Point (see 2.3.7.4, Low Level Point on page 100)
- High Level Point (see 23.7.5. High Level Point on page 100)
- Level Offset (see 2.3.7.6. Level Offset on page 100)


Rate

[see Rate (2.3.8.) on page 100]

- Response Rate (see 2.38.1. Response Rate on page 100)
- Fill Rate per minute (see 2.38.2. Fill Rate per Minute on page 101)
- Empty Rate per minute (see 2.38.3. Empty Rate per Minute on page 101)

Linearization (LTB)

You can use the linearization feature to define a more complex vessel shape and enter up to 32 level breakpoints where the corresponding volume is known. (See *24. Linearization* on page 101.)

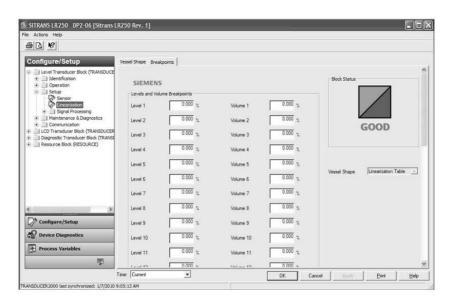
Navigate to **Configure/Setup > LTB > Setup > Linearization** and click on **Linearization**. Click on the Vessel Shape tab to access the parameters listed:

Vessel Shape

Vessel Shape (see 2.4.1.1. Vessel Shape on page 101)

Vessel Dimensions

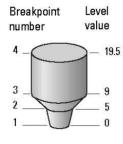
- Maximum Volume (see 2.4.1.2. Maximum Volume on page 103)
- Vessel Dimension A (see 24.13, Dimension A on page 103)
- Vessel Dimension L (see 2.4.1.4. Dimension L on page 103)

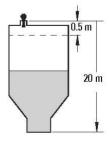

OR

Click on Breakpoints tab for access to level and volume breakpoints.

Note: This parameter becomes accessible only after **Linearization Table** has been selected in **Vessel Shape** above.

Level and Volume Breakpoints (see XY Index (2.4.1.5.) on page 103)

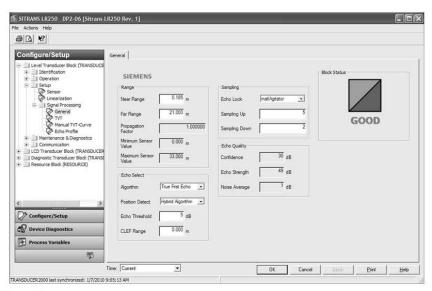

- Level 1 Level 32
- Volume 1 ... Volume 32
- Vessel Shape


- a) The default for level values is percent: if you want to select units instead, go to Configure/Setup > LTB > Setup > Sensor > Level Unit, and select the desired unit.
- Go to Configure/Setup > LTB > Setup > Sensor > PV (Volume/Level) Unit, and select the desired volume units.
- From the Vessel Shape tab of Configure/Setup > LTB > Setup >
 Linearization, select Linearization Table option in the Vessel Shape field.
- d) Click on the Breakpoints tab and enter values for level and volume breakpoints in table.

The values corresponding to 100% and 0% levels must be entered. The breakpoints can be ordered from top to bottom, or the reverse.

Example:

Break- point no.	Level value (m)	Volume value (I)
1	0	0
2	5	500
3	9	3000
4	19.5	8000



Note: Values are for example purposes only.

After completing the above steps you will need to configure AIFB 1 and/or AIFB 2. (See 26. AIFB 1 on page 113 and 2.7. AIFB 2 on page 116 for details.)

Signal Processing (LTB)

Note: For more detailed explanations of the parameters listed below see the pages referenced.

General

Navigate to Configure/Setup > LTB > Setup > Signal Processing and click on General for access to:

Range

[see Signal Processing (2.5.) on page 104]

- Near Range (see 2.5.1. Near Range on page 105)
- Far Range (see 25.2 Far Range on page 105)
- Propagation Factor (see 2.5.3. Propagation Factor on page 105)
- Minimum Sensor Value (see 2.5.4. Minimum Sensor Value on page 106)
- Maximum Sensor Value (see 25.5, Maximum Sensor Value on page 106)

Echo Select

[see Echo Select (2.5.7.) on page 106]

- Algorithm (see 2.5.71. Algorithm on page 106)
- Position Detect (see 2.5.7.2. Position Detect on page 107)
- Echo Threshold (see 25.73. Echo Threshold on page 107)
- CLEF Range (see 2.5.7.4, CLEF (Constrained Leading Edge Fit) Range on page 108)

Sampling

[see Sampling (2.5.8.) on page 108]

- Echo Lock (see 25.8.1. Echo Lock on page 109)
- Sampling Up (see 25.8.2. Up Sampling on page 109)
- Sampling Down (see 2.5.8.3. Down Sampling on page 109)

Echo Quality

[see Echo Quality (2.5.9.) on page 109]

- Confidence (see 2.5.9.1. Confidence on page 109)
- Echo Strength (see 2.5.9.2 Echo Strength on page 109)
- Noise Average

Displays the average ambient noise (in dB above 1 µV rms) of a noise profile. Noise level is a combination of transient noise and receiving circuitry. After a measurement, the values from the previous noise shot will be displayed.

TVT (time varying threshold)

A time-varying curve that determines the threshold level above which echoes are determined to be valid.

Modify the TVT to screen out false echoes [see *Time Varying Threshold (TVT)* on page 146, and *Auto False Echo Suppression (2510.1)* on page 148].

Navigate to **Configure/Setup > LTB > Setup > Signal Processing** and click on **TVT**. Click on one of the two tabs to access the parameters listed:

TVT Setup


- Auto False Echo Suppression (see 2.5.10.1. Auto False Echo Suppression on page 110)
- Auto False Echo Suppression Range (see 25.10.2 Auto False Echo Suppression Range on page 111)
- Hover Level (see 2.5.10.3. Hover Level on page 112)
- Shaper Mode (see 2.5.10.4. Shaper Mode on page 112)

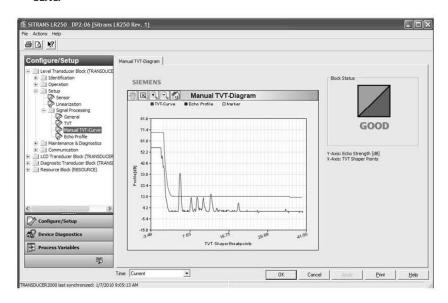
Auto False Echo Suppression

After determining values as described in steps a) and b) of **2510.1 Auto** False Echo Suppression on page 110,

Open the menu Configure/Setup > LTB > Setup > Signal Processing
 TVT and set Auto False Echo Suppression Range.

d) From the same menu, set Auto False Echo Suppression to learn. The device will automatically revert to On (Use Learned TVT) after a few seconds.

TVT Shaper


[see TVT Shaper (2.5.11.) on page 112]

- Breakpoints 1 to 40
- Shaper Mode
- a) Open the menu Configure/Setup > LTB > Setup > Signal Processing > TVT and click on the TVT Setup tab
- Turn Shaper Mode to **On** to activate Breakpoints 1 to 40 on the TVT Shaper tab

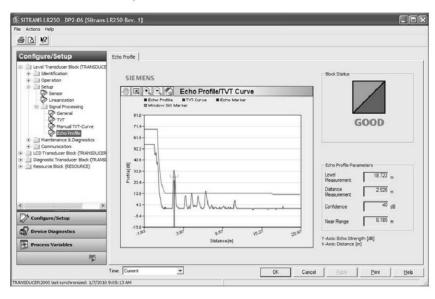
Manual TVT Curve

Displays the effects of the TVT shaper modifications.

Navigate to Configure/Setup > LTB > Setup > Signal Processing and click on Manual TVT-Curve.

Echo Profile

Displays the current echo profile.


Navigate to Configure/Setup > LTB > Setup > Signal Processing and click on Echo Profile to view the current echo profile and to access:

Echo Profile Parameters

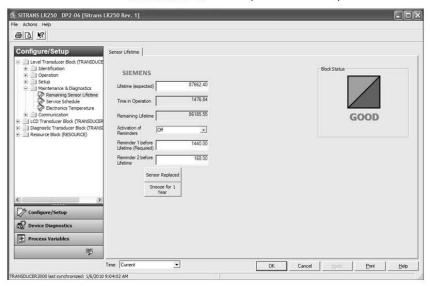
[see Echo Profile (3.1.) on page 117]

- Level Measurement (see 2.8. Measured Values on page 116)
- Distance Measurement (see 28. Measured Values on page 116)
- Confidence (see 2.5.9.1. Confidence on page 109)
- Near Range (see 2.5.1. Near Range on page 105)

 To view a previous profile, click the drop-down arrow on the **Time** field and select the desired profile (note: available only using AMS version 10.1 or later).

Maintenance & Diagnostics (LTB)

Note: For more detailed explanations of the parameters listed below see the pages referenced.

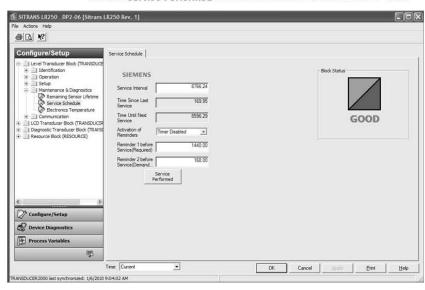

Navigate to Configure/Setup > LTB > Maintenance and Diagnostics for access to:

Remaining Sensor Lifetime

[see Remaining Sensor Lifetime (4.3.) on page 121]

- Lifetime (expected) (see 4.3.1. Lifetime Expected on page 122)
- Time in Operation (see 4.3.2. Time in Operation on page 122)
- Remaining Lifetime (see 4.3.3. Remaining Lifetime on page 122)
- Activation of Reminders (see 4.3.4, Reminder Activation on page 122).
- Reminder 1 before Lifetime (Required) [see 4.3.5. Reminder 1 (Required) on page 122]
- Reminder 2 before Lifetime (Demanded) [see 4.3.6. Reminder 2 (Demanded) on page 123]
- a) Open the window Remaining Sensor Lifetime
- After modifying values/units as required, click on Apply to accept the change.

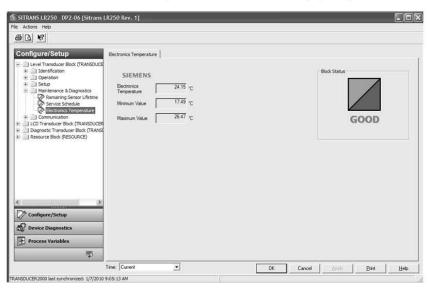
- Click on Sensor Replaced to reset Time in Operation to 0 hours
- Click on Snooze for 1 Year to add a year to the Total Expected Sensor Life



Service Schedule

[see Service Schedule (4.4.) on page 123]

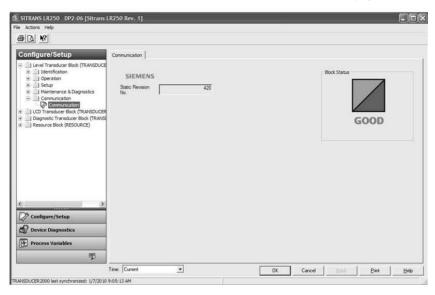
- Service Interval (see 4.4.1. Service Interval on page 124)
- Time Since Last Service (see 4.4.2. Time Last Serviced on page 124)
- Time Until Next Service (see 4.4.3. Time Next Serviced on page 124)
- Activation of Reminders (see 4.4.4. Reminder Activation on page 124)
- Reminder 1 before Service (Required) (see 4.4.5. Reminder 1 (Required) on page 124)
- Reminder 2 before Service (Demanded) (see 4.4.6. Reminder 2 (Demanded) on page 124)


Click on Service Performed to reset Time Since Last Service to 0 hours

Electronics Temperature

[see Electronics Temperature (3.3.) on page 118]

- Electronics Temperature
 Displays the current internal temperature of the device
- Minimum Value (see 3.3.1. Minimum Value on page 118)
- Maximum Value (see 3.3.2. Maximum Value on page 118)



Communication (LTB)

Navigate to Configure/Setup > LTB > Communication for access to:

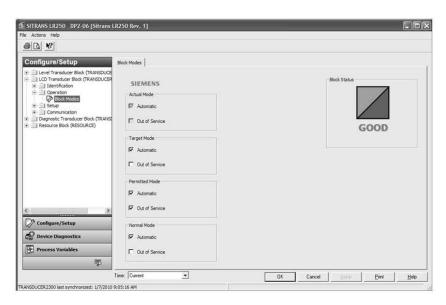
Communication:

• Static Revision No. (see 26.1 Static Revision Number on page 113)

Configure/Setup (Liquid Crystal Display Block-LCD)

Identification (LCD)

Navigate to Configure/Setup > LCD > Identification.


Identification:

- TAG
- Descriptor
- Transducer Block Type
- Strategy
- Plant Unit

Note: For descriptions of Identification parameters see Identification: on page 49.

Operation (LCD)

Note: For more detailed explanations of the parameters listed below see the pages referenced.

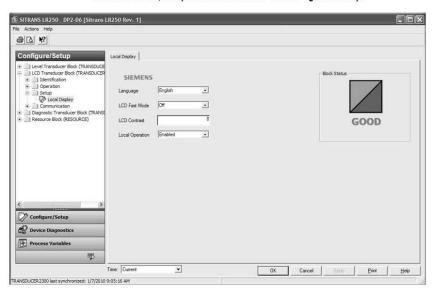
Navigate to Configure/Setup > LCD > Operation.

Click on Block Modes to open the dialog window for access to:

Block Modes:

- Actual Mode
- Target Mode
- Permitted Mode
- Normal Mode

Note: For descriptions of Block Modes see Block Modes: on page 50.


To disable updating of the LCD remotely, Actual Mode of this block should read **Out of Service**. This is done by setting Target Mode to **Out of Service**.

Setup (LCD)

Navigate to Configure/Setup > LCD > Setup > Local display for access to:

Local Display

- Language (see 7. Language on page 130)
- LCD Fast Mode (see 4.9. LCD Fast Mode on page 127)
- LCD Contrast (see 4.10. LCD Contrast on page 127)
- Local Operation (see 6.2.3. Local Operation on page 130)
 If local operation is disabled remotely and no communication activity exists for 30 seconds, the parameter is made visible again locally.

Communication (LCD)

Navigate to Configure/Setup > LCD > Communication for access to:

Communication:

Static Revision No. (see 2.6.1. Static Revision Number on page 113)

Configure/Setup (Diagnostic Transducer Block-DIAG)

Note: Parameters in the Diagnostic Transducer Block used solely by factory personnel.

Identification (DIAG)

Navigate to Configure/Setup > DIAG > Identification.

Identification:

- TAG
- Descriptor
- Transducer Block Type
- Strategy
- Plant Unit

Note: For descriptions of Identification parameters see Identification: on page 49.

Operation (DIAG)

Navigate to Configure/Setup > DIAG > Operation.

Block Modes:

- Actual Mode
- Target Mode
- Permitted Mode
- Normal Mode

Note: For descriptions of Block Modes see Block Modes: on page 50.

Communication (DIAG)

Navigate to Configure/Setup > DIAG > Communication.

Communication:

• Static Revision No. (see 26.1. Static Revision Number on page 113)

Configure/Setup (Resource Block - RESOURCE)

Note: For more detailed explanations of the parameters listed below see the pages referenced

Identification (RESOURCE)

Navigate to Configure/Setup > RESOURCE > Identification for access to:

Identification

TAG

Read only. Description for the associated block: device tag prefixed by block type.

- Descriptor (see 21.2 Descriptor on page 97).
- Message (see 21.3. Message on page 97)
- Date (Installation Date)

The user entered date on which the device was installed in the system.

Strategy

Used to identify grouping of blocks.

Plant Unit

The identification number of the plant unit. For example, can be used in the host for sorting alarms.

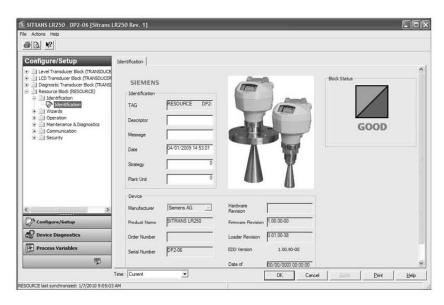
Device (read only)

- Manufacturer (see 5.3. Manufacturer on page 128).
- Product Name

The manufacturer's product name for this device.

Order Number

The manufacturer's order number (MLFB) for this device.


Serial Number

The manufacturer's unique serial number for this device.

- Hardware Revision (see 2.21, Hardware Revision on page 97)
- Firmware Revision (see 2.2.2 Firmware Revision on page 97)
- Loader Revision (see 2.2.3. Loader Revision on page 97).
- EDD Version

The version of the EDD currently installed.

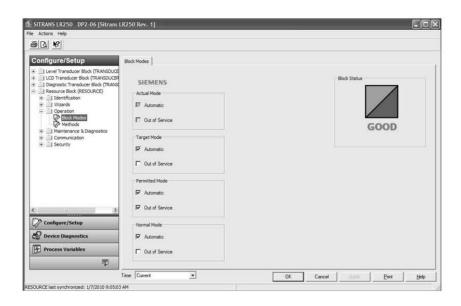
Date of Manufacturing (see Manufacture Date on page 127)

Wizards (RESOURCE)

Navigate to Configure/Setup > RESOURCE > Wizards > Quick Start for access to Quick Start steps (see Quick Start Wizard via AMS Device Manager on page 45).

Operation (RESOURCE)

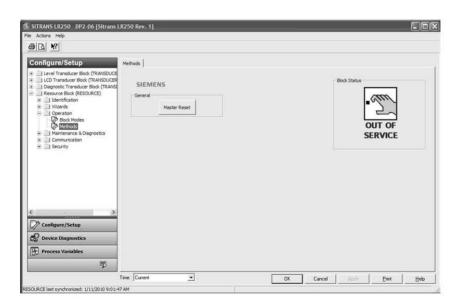
Navigate to Configure/Setup > RESOURCE > Operation.


Click on **Block Modes** to open the dialog window for access to:

Block Modes:

- Actual Mode
- Target Mode
- Permitted Mode
- Normal Mode

Notes:


- For descriptions of Block Modes see Block Modes: on page 50.
- If the RESOURCE block is set to Out of Service, the LTB, and AIFB blocks are forced to Out of Service also, but the LCD and DIAG blocks remain in Automatic mode.

Click on Methods to open the dialog window for access to:

General:

 Master Reset (see 4.1. Master Reset on page 119)

- a) Ensure the Block Status is Out of Service.
- b) Click the Master Reset button, then click Next to perform a reset.

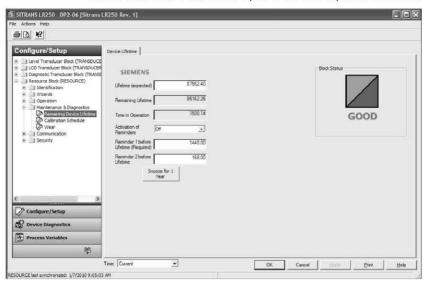
c) Select the Reset Type:

Note: The following parameters are not reset by any reset type: Write Protection, PIN to Unlock, Auto False Echo Suppression Range, Learned TVT.

Reset Type	Result	
Factory Defaults ^{a)}	Default. Resets all user parameters to the manufacturer's default settings. Following this type of reset, complete reprogramming is required.	
Standard Defaults	Resets all parameters to standard default settings.	
Informational	Resets parameters such as Block Descriptor, Strategy, Device Install Date, Device Message.	
Functional ¹⁾	Resets parameters that control device behavior and functionality (such as Low Calibration Point).	
Warm Start	Has the same effect as recycling power to the device.	
FF Object Dictionary	Resets the FF standard block profile parameters (such as block tags) to their specified defaults. This option also clears any function block parameters and device schedule ^{b)} set by the user.	

- The only difference between Factory Defaults and Functional reset is that Factory Defaults resets maintenance parameters, such as device and sensor wear, calibration and maintenance timers. Functional reset does not reset these parameters.
- b) See **Data transmission** in manual *Foundation Fieldbus for Level Instruments* (7ML19985MP01) for further details.
- d) Click Next, then FINISH to complete the Master Reset.

Maintenance & Diagnostics (RESOURCE)

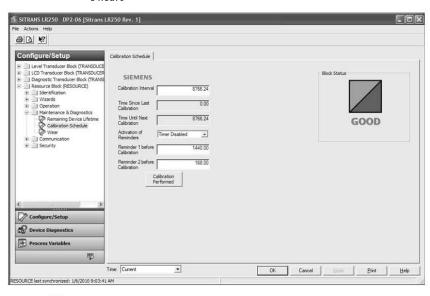

Navigate to Configure/Setup > RESOURCE > Maintenance & Diagnostics for access to:

Remaining Device Lifetime

[see Remaining Device Lifetime (4.2.) on page 120]

- Lifetime Expected (see 4.21. Lifetime Expected on page 120)
- Remaining Lifetime (read only) (see 4.23. Remaining Lifetime on page 120)
- Time in Operation (read only) (see 4.2.2. Time in Operation on page 120)
- Activation of Reminders (see 4.24. Reminder Activation on page 120)
- Reminder 1 before Lifetime (Required) (see 4.2.5. Reminder 1 (Required) on page 121)
- Reminder 2 before Lifetime (Demanded) (see 4.26. Reminder 2 (Demanded) on page 121)
- a) Open the window Remaining Device Lifetime
- After modifying values/units as required, click on **Apply** to accept the change.

. Click on Snooze for 1 Year to add a year to the Total Expected Device Life



Calibration Schedule

[see Calibration Schedule (4.5.) on page 125]


- Calibration Interval (see 4.5.1. Calibration Interval on page 125)
- Time Since Last Calibration (see 4.5.2. Time Last Calibrated on page 125)
- Time Until Next Calibration (read only) (see 4.5.3. Time Next Calibrated on page 126)
- Activation of Reminders (see 4.5.4. Reminder Activation on page 126)
- Reminder 1 before Calibration (Required) (see 4.5.5. Reminder 1 (Required) on page 126)
- Reminder 2 before Calibration (Demanded) (see 4.5.6. Reminder 2 (Demanded) on page 126)

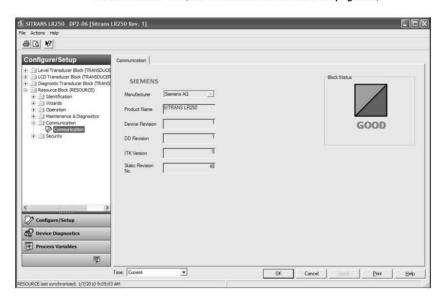
 Click on Calibration Performed to reset Time Since Last Calibration to 0 hours

Wear

- Powered Days (read only) (see 4.7. Powered Hours on page 127)
- Poweron Resets (read only) (see 4.8. Power-on Resets on page 127)

Communication (RESOURCE)

Navigate to Configure/Setup > RESOURCE > Communication to read the following:

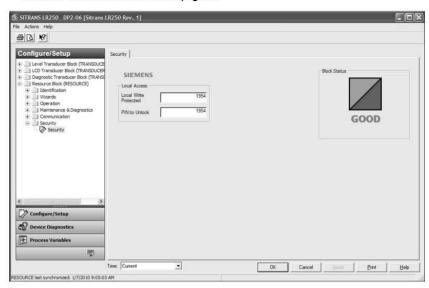

- Manufacturer (see Manufacturer on page 128)
- Product Name

The manufacturer's product name for this device.

- Device Revision (see 5.5. Device Revision on page 129)
- DD Revision

Revision of the DD (also called EDD) associated with this device.

- ITK Version (see 5.6. ITK Version on page 129)
- Static Revision No. (see Static Revision Number on page 113)



Security (RESOURCE)

Navigate to Configure/Setup > RESOURCE > Security to access:

Local Access

- Local Write Protected (see 6.21. Write Protection on page 129)
- PIN to Unlock (see 6.2.2. PIN to Unlock on page 130)

<u>Device Diagnostics (Level Transducer Block - LTB)</u>

Note: For explanations of the alarms and errors listed below, see Parameter Description charts for the respective block in manual *Foundation Fieldbus for Level Instruments* (7ML19985MP01).

Alarms & Errors (LTB)

Navigate to **Device Diagnostics > LTB > Alarms & Errors**.

Click on **Block Error** to open the dialog window to read the following:

Failures

- Input Failure
- Output Failure
- Memory Failure
- Lost Static Data
- Lost Non-Volatile Data
- Readback Check
- Device Fault State
- Block Configuration
- · Link Configuration
- Other

Maintenance

- Maintenance Required
- Maintenance Demanded

Information

- Simulation Active
- Local Override
- Power Up
- Out of Service

XD Error

Transducer Error

Click on Block Alarm to open the dialog window to read the following:

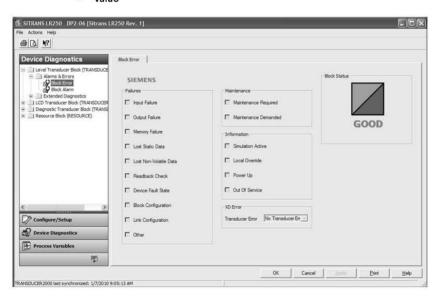
Unacknowledged

Unacknowledged

Alarm State

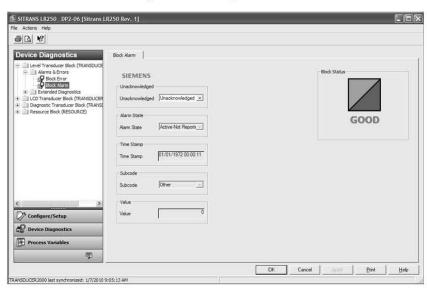
Alarm State

Time Stamp


Time Stamp

Subcode

Subcode


Value

Value

- a) From the Block Error tab, check the Maintenance window to display the level of maintenance alarm that is active.
- b) From the Block Alarm tab, check the Alarm State window to display the level of maintenance alarm that has been acknowledged.

From the Block Alarm tab, in the Unacknowledged window, select
 Acknowledged to acknowledge an alert.

Note: Acknowledging a maintenance reminder from the device (see *Acknowledge* 4.29., 4.3.9., 4.4.9., 4.5.9.) will not set the Block Alarm to *Acknowledged* in AMS. The maintenance alarm will cause an FF block alert, and the block alert can only be acknowledged via a remote host such as NI-FBUS Configurator or AMS Device Manager (as in step c above).

Extended Diagnostics (LTB)

Navigate to Device Diagnostics > LTB > Extended Diagnostics to read the following:

Detailed Error Info

- Loss of Echo
- No Tech Power
- Sensor Lifetime Limit1
- Sensor Lifetime Limit?
- Device Service Limit1
- Device Service Limit?
- ITB Scale
- Internal Temp Sensor
- Internal Temp High
- Internal Temperature Calibration
- Velocity Calibration
- Receiver Init Calibration
- Receiver Calibration
- Tech Module Hardware
- Tech Module Ramp
- Receiver Frequency Calibration
- Safe Process Data Corrupt
- Profile Clipped
- Too Few Shots Taken
- Measurement Error
- No Shots Taken
- Measurement Was Corrupted
- DMA Error
- Sensor Value too High
- Sensor Value too Low

<u>Device Diagnostics (Liquid Crystal Display Block - LCD)</u>

Alarms & Errors (LCD)

Navigate to **Device Diagnostics > LCD > Alarms & Errors** to read Block and Alarm errors. [Errors displayed are the same for each block (LTB, LCD, DIAG, RESOURCE). See *Alarms & Errors (LTB) on page 73* for full listing.]

<u>Device Diagnostics (Diagnostic Transducer Block - DIAG)</u>

Alarms & Errors (DIAG)

Navigate to **Device Diagnostics > DIAG > Alarms & Errors** to read Block and Alarm errors. [Errors displayed are the same for each block (LTB, LCD, DIAG, RESOURCE). See *Alarms & Errors (LTB) on page 73* for full listing. See AMS Device Manager instruction manual to work with alarms and errors.]

<u>Device Diagnostics (Resource Block - RESOURCE)</u>

Alarms & Errors (RESOURCE)

Navigate to Device Diagnostics > RESOURCE > Alarms & Errors.

Click on Block Error tab to open the dialog window to read the following:

Failures

- Input Failure
- Output Failure
- Memory Failure
- Lost Static Data
- · Lost Non-Volatile Data
- · Readback Check
- Device Fault State
- · Block Configuration
- Link Configuration
- Other

Maintenance

- Maintenance Required
- · Maintenance Demanded

Information

- · Simulation Active
- · Local Override
- · Power Up
- · Out of Service

Click on Block Alarm tab to open the dialog window to read the following:

Unacknowledged

Unacknowledged

Alarm State

Alarm State

Time Stamp

Time Stamp

Subcode

Subcode

Value

Value

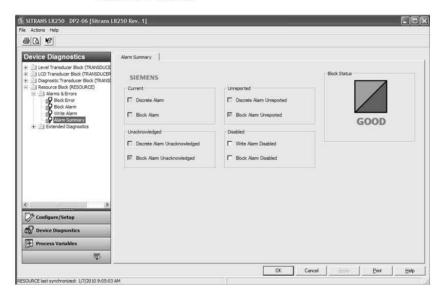
Values available on **Block Alarm** tab are also available for **Write Alarm** with one exception: the Value parameter on the Write Alarm tab is a **Discrete Value**.

Click on Alarm Summary tab to open the dialog window to read the following:

Current

- Discrete Alarm
- Block Alarm

Unacknowledged

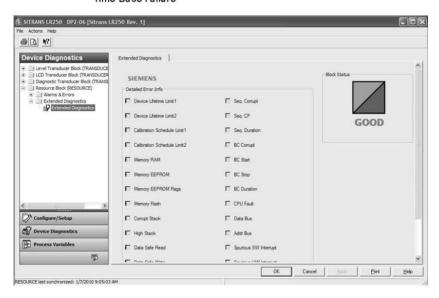

- Discrete Alarm Unacknowledged
- Block Alarm Unacknowledged

Unreported

- Discrete Alarm Unreported
- Block Alarm Unreported

Disabled

- Write Alarm Disabled
- Block Alarm Disabled


Extended Diagnostics (RESOURCE)

Navigate to **Device Diagnostics > RESOURCE > Extended Diagnostics** to read the following:

Detailed Error Info

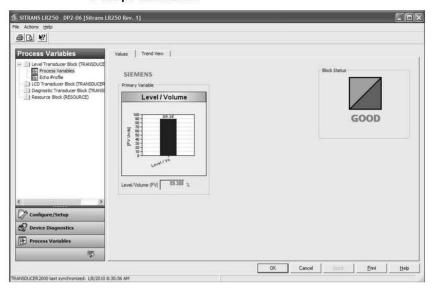
- Device Lifetime Limit1
- Device Lifetime Limit2
- Calibration Schedule Limit1
- Calibration Schedule Limit2
- Memory RAM
- Memory EEPROM
- Memory EEPROM Flags
- Memory Flash
- Corrupt Stack
- · High Stack

- Data Safe Bead
- Data Safe Write
- Board Voltage
- ADC Failed
- · Sea. Corrupt
- Sea. CP
- · Seg. Duration
- BC Corrupt
- BC Start
- BC Stop
- BC Duration
- CPU Fault
- Data Bus
- Addr Bus
- Spurious SW Interrupt
- Spurious HW Interrupt
- Time Base Failure

Process Variables (Level Transducer Block-LTB)

To compare outputs in real time navigate to Process Variables > LTB.

Click on Process Variables then the Values tab to read the following:


Primary Variable (see 28.1. Main Output (PV- Primary Value) on page 116)

Level/Volume (PV)

The primary variable and the channel 1 output from the transducer block.

For level applications, chart range is affected by High and Low Level Point values set in Configure/Setup > LTB > Setup > Sensor. For volume

applications, chart range is 0 to Max. Volume, set in Configure/Setup > LTB > Setup > Linearization.

Click on Trend View tab to read the following:

Trend Values

Level/Volume (PV)

The primary variable and the channel 1 output from the transducer block.

Click on Echo Profile to open the dialog window to read the following:

Echo Profile

- Level Measurement (see 2.8. Measured Values on page 116)
- Distance Measurement (see 2.8. Measured Values on page 116)
- Confidence (see 2.5.9.1, Confidence on page 109)
- Near Range (see 2.5.1, Near Range on page 105)

Password Protection

An AMS Device Manager administrator can configure the user to require a password. The use of passwords is recommended. A password should be assigned to the 'admin' username immediately after installing AMS Device Manager.

Each user is given an AMS Device Manager username and password and required to enter them when they start AMS Device Manager. Access to functions depends on the level of permissions granted.

Login types

standard, local, or domain

A standard user can change their password in AMS Device Manager. A Local or Domain Windows user cannot change their password using AMS Device Manager and must request their network administrator to do so.

User Manager utility

Usernames, passwords, and permissions, are assigned to users by an AMS Device Manager administrator, using the User Manager utility on the Server Plus Station. Only a user with AMS Device Manager System Administration rights can log in to User Manager.

To configure a new user/edit existing user:

- From the Windows taskbar select: Start > AMS Device Manager > User Manager.
- In the User Manager window click on Add User.

The Add User Wizard dialog allows you to:

- select a user type, Standard User (AMS Device Manager) or Window User
- · enter the username and password, and set permissions
- edit existing users.

AMS Menu Structure CONFIGURE/SETUP

LEVEL TRANSDUCER BLOCK

IDENTIFICATION

Identification

Identification (tab)

TAG

Descriptor

Transducer Block Type

Strategy

Plant Unit

OPERATION

Block Modes

Block Modes (tab)

Actual Mode

Automatic

Out of Service

Target Mode

Automatic

Out of Service

Permitted Mode

Automatic

Out of Service

Normal Mode

Automatic

Out of Service

Simulation

Simulation(Input) (tab)

Sensor Value Simulation

Simulation

Simulation Value

RAMP start

RAMP end

RAMP No of steps

RAMP steplength

SETUP

Sensor

Sensor (tab)

General

Unit

Level Unit

Temperature Unit

```
PV (Volume/Level) Unit
              Application Type
              Material
              Antenna
              Loss of Echo Timer
          Calibration
              Low Calibration Point
              High Calibration Point
              Sensor Offset
              Low Level Point
              High Level Point
              Level Offset
          Rate
              Response Rate
              Fill Rate per minute
              Empty Rate per minute
Linearization
     Vessel Shape (tab)
          Vessel Shape
              Vessel Shape
          Vessel Dimensions
              Maximum Volume
              Vessel Dimension A
              Vessel Dimension L
     Breakpoints (tab)
          Levels and Volume Breakpoints
              Level 1
              Level 2
              Level 32
              Volume 1
              Volume 2
              Volume 32
              Vessel Shape
General
     General (tab)
          Range
              Near Range
              Far Range
              Propagation Factor
              Minimum Sensor Value
              Maximum Sensor Value
          Echo Select
```

Signal Processing

Algorithm

Echo Threshold **CLEF Range** Sampling Echo Lock Sampling Up Sampling Down **Echo Quality** Confidence **Echo Strenath** Noise Average **TVT** TVT Setup (tab) Auto False Echo Suppression Auto False Echo Suppression Range Hover Level Shaper Mode TVT Shaper (tab) **Breakpoints** Breakpoint 1 **Breakpoint 2** Breakpoint 40 Shaper Mode Manual TVT-Curve Manual TVT-Diagram (tab) **Echo Profile** Echo Profile (tab) **Echo Profile Parameters** Level Measurement Distance Measurement Confidence Near Range MAINTENANCE & DIAGNOSTICS Remaining Sensor Lifetime Sensor Lifetime (tab) Lifetime (expected) Time in Operation Remaining Lifetime **Activation of Reminders** Reminder 1 before Lifetime (Required) Reminder 2 before Lifetime (Demanded) Service Schedule

Position Detect

Service Schedule (tab)

Service Interval
Time Since Last Service

Time Until Next Service
Activation of Reminders
Reminder 1 before Service (Required)
Reminder 2 before Service (Demanded)

Electronics Temperature

Electronics Temperature (tab)

Electronics Temperature

Minimum Value Maximum Value

COMMUNICATION

Communication

Communication (tab)
Static Revision No.

LCD TRANSDUCER BLOCK

IDENTIFICATION

Identification

Identification (tab)

TAG

Descriptor

Transducer Block Type

Strategy

Plant Unit

OPERATION

Block Modes

Block Modes (tab)

Actual Mode

Automatic

Out of Service

Target Mode

Automatic

Out of Service

Permitted Mode

Automatic

Out of Service

Normal Mode

Automatic

Out of Service

SETUP

Local Display

Local Display (tab)

Language

LCD Fast Mode

LCD Contrast

Local Operation

Communication

Communication (tab)
Static Revision No.

DIAGNOSTIC TRANSDUCER BLOCK

IDENTIFICATION

Identification

Identification (tab)

TAG

Descriptor

Transducer Block Type

Strategy

Plant Unit

OPERATION

Block Modes

Block Modes (tab)

Actual Mode

Automatic

Out of Service

Target Mode

Automatic

Out of Service

Permitted Mode

Automatic

Out of Service

Normal Mode

Automatic

Out of Service

COMMUNICATION

Communication

Communication (tab)

Static Revision No.

RESOURCE BLOCK

DENTIFICATION

Identification

Identification (tab)

Identification

TAG

Descriptor

Message

Date

Strategy

```
Plant Unit
                       Device
                           Manufacturer
                           Product Name
                           Order Number
                           Serial Number
                           Hardware Revision
                           Firmware Revision
                           Loader Revision
                           FDD Version
                           Date of Manufacturing
Quick Start
            Step 1 - Identification
                  Step 1 of 5: Identification (tab)
                           TAG
                           Descriptor
                           Message
                           Date
                           Order Number
                           Language
            Step 2 - Application
                  Step 2 of 5: Application (tab)
                           Application Type
                           Propagation Factor
                           Material
            Step 3 - Vessel Shape
                  Step 3 of 5: Vessel Shape (tab)
                           Vessel Shape
            Step 4 - Ranges
                  Step 4 of 5: Ranges (tab)
                           Unit
                           Low Calibration Point (X)
                           High Calibration Point (Y)
                           Response Rate
                           Maximum Volume
                           Vessel Dimension A
                           Vessel Dimension L
                  Breakpoints (tab)
                       Levels and Volume Units
                           Level Unit
                           PV (Volume/Level) Unit
                       Levels and Volume Breakpoints
                           Level 1
                           Level 2
```

WIZARDS

Level 32 Volume 1 Volume 2

.

Volume 32

Step 5 - Summary

Step 5 of 5: Summary (tab)

Identification

TAG

Descriptor

Message

Date

Order Number

Language

Application

Application Type

Propagation Factor

Material

Vessel Shape

Vessel Shape

Ranges

Unit

Low Calibration Point (X)

High Calibration Point (Y)

Response Rate

Maximum Volume

Vessel Dimension A

Vessel Dimension L

OPERATION

Block Modes

Block Modes (tab)

Actual Mode

Automatic

Out of Service

Target Mode

Automatic

Out of Service

Permitted Mode

Automatic

Out of Service

Normal Mode

Automatic

Out of Service

Methods

Methods (tab)

General

Master Reset

MAINTENANCE & DIAGNOSTICS

Remaining Device Lifetime

Device Lifetime (tab)

Lifetime (expected) Remaining Lifetime

Time in Operation

Activation of Reminders

Reminder 1 before Lifetime (Required)

Reminder 2 before Lifetime (Demanded)

Calibration Schedule

Calibration Schedule (tab)

Calibration Interval

Time Since Last Calibration
Time Until Next Calibration

Activation of Reminders

Reminder1 before Calibration (Required)
Reminder2 before Calibration(Demanded)

Wear

Wear (tab)

Powered Days Poweron Resets

COMMUNICATION

Communication

Communication (tab)

Manufacturer Product Name Device Revision DD Revision

ITK Version Static Revision No.

SECURITY

Security

Security (tab)

Local Access

Local Write Protected

PIN to Unlock

DEVICE DIAGNOSTICS

LEVEL TRANSDUCER BLOCK

ALARMS & ERRORS

```
Block Error
```

Block Error (tab)

Failures

Input Failure

Output Failure

Memory Failure

Lost Static Data

Lost Non-Volatile Data

Readback Check

Device Fault State

Block Configuration

Link Configuration

Other

Maintenance

Maintenance Required

Maintenance Demanded

Information

Simulation Active

Local Override

Power Up

Out Of Service

XD Error

Transducer Frror

Block Alarm

Block Alarm (tab)

Unacknowledged

Unacknowledged

Alarm State

Alarm State

Time Stamp

Time Stamp

Subcode

Subcode

Value

Value

EXTENDED DIAGNOSTICS

Extended Diagnostics

Extended Diagnostics (tab)

Detailed Error Info

Loss of Echo

No Tech Power

Sensor Lifetime Limit1 Sensor Lifetime Limit2

Device Service Limit1

Device Service Limit2

LTB Scale

Internal Temp Sensor

Internal Temp High

Internal Temperature Calibration

Velocity Calibration

Receiver Init Calibration

Receiver Calibration

Tech Module Hardware

Tech Module Ramp

Receiver Frequency Calibration

Safe Process Data Corrupt

Profile Clipped

Too Few Shots Taken

Measurement Error

No Shots Taken

Measurement Was Corrupted

DMA Error

Sensor Value too High

Sensor Value too Low

LCD TRANSDUCER BLOCK

ALARMS & ERRORS

Block Error

Block Error (tab)

Failures

Input Failure

Output Failure

Memory Failure

Lost Static Data

Lost Non-Volatile Data

Readback Check

Device Fault State

Block Configuration

Link Configuration

Other

Maintenance

Maintenance Required

Maintenance Demanded

Information

Simulation Active

Local Override

Power Up

Out Of Service

XD Error

Transducer Error

Block Alarm

Block Alarm (tab)

Unacknowledged

Unacknowledged

Alarm State

Alarm State

Time Stamp

Time Stamp

Subcode

Subcode

Value

Value

DIAGNOSTIC TRANSDUCER BLOCK

ALARMS & ERRORS

Block Error

Block Error (tab)

Failures

Input Failure

Output Failure

Memory Failure

Lost Static Data

Lost Non-Volatile Data

Readback Check

Device Fault State

Block Configuration

Link Configuration

Other

Maintenance

Maintenance Required

Maintenance Demanded

Information

Simulation Active

Local Override

Power Up

Out Of Service

XD Error

Transducer Error

Block Alarm

Block Alarm (tab)

Unacknowledged

Unacknowledged

Alarm State
Alarm State
Time Stamp
Time Stamp
Subcode
Subcode
Value
Value

RESOURCE BLOCK

ALARMS & ERRORS

Block Error

Block Error (tab)

Failures

Input Failure

Output Failure

Memory Failure

Lost Static Data

Lost Non-Volatile Data

Readback Check

Device Fault State

Block Configuration

Link Configuration

Other

Maintenance

Maintenance Required

Maintenance Demanded

Information

Simulation Active

Local Override

Power Up

Out Of Service

Block Alarm

Block Alarm (tab)

<u>Unacknowledged</u>

Unacknowledged

Alarm State

Alarm State

Time Stamp

Time Stamp

Subcode

Subcode

Value

Value

Write Alarm

Write Alarm (tab)

Unacknowledged

Unacknowledged

Alarm State

Alarm State

Time Stamp

Time Stamp

Subcode

Subcode

Value

Discrete Value

Alarm Summary

Alarm Summary (tab)

Current

Discrete Alarm

Block Alarm

Unacknowledged

Discrete Alarm Unacknowledged

Block Alarm Unacknowledged

Unreported

Discrete Alarm Unreported

Block Alarm Unreported

<u>Disabled</u>

Write Alarm Disabled

Block Alarm Disabled

EXTENDED DIAGNOSTICS

Extended Diagnostics

Extended Diagnostics (tab)

Detailed Error Info

Device Lifetime Limit1

Device Lifetime Limit2

Calibration Schedule Limit1

Calibration Schedule Limit2

Memory RAM

Memory EEPROM

Memory EEPROM Flags

Memory Flash

Corrupt Stack

High Stack

Data Safe Read

Data Safe Write

Board Voltage

ADC Failed

Seq. Corrupt

Seq. CP

Seq. Duration
BC Corrupt
BC Start
BC Stop
BC Duration
CPU Fault
Data Bus
Addr Bus
Spurious SW Interrupt
Spurious HW Interrupt
Time Base Failure

PROCESS VARIABLES LEVEL TRANSDUCER BLOCK

PROCESS VARIABLES

Process Variables

Values (tab)

Primary Variable

Level/Volume (PV)

Trend View (tab)

Trend Values

Level/Volume (PV)

Echo Profile

Echo Profile (tab)

Echo Profile Parameters

Level Measurement

Distance Measurement

Confidence

Near Range

Parameter Reference (LUI)

Notes:

- See Enter PROGRAM mode on page 33 for detailed instructions.
- To view a particular parameter in AMS, see Operating via AMS Device Manager on page 40.
- Do not use the handheld programmer at the same time as AMS Device Manager, or erratic operation may result.
- Mode toggles between PROGRAM and Measurement Modes.
- For Quick Access to parameters in Navigation mode, press **Home** . then enter the menu number, for example enter **2.2.1** to access parameter *221Hardware Revision*.

- In Navigation mode, ARROW keys navigate the menu in the direction of the arrow.
 - Press RIGHT arrow to open Edit Mode, or to save a modification.

Parameters are identified by name and organized into function groups. Menus arranged on up to four levels give access to associated features and options. (See **LCD Menu Structure** on page 169 for a chart.)

Parameters noted as *Read Only* in this section of the manual can not be written via the LUI, however they may be accessible via other tools. For those accessible via AMS Device Manager, directions are shown in section *Operating via AMS Device Manager* on the pages referenced.

Quick Start Wizard

The Quick Start Wizard groups together all the settings you need to configure a device for a simple application. You can access it either via AMS Device Manager or via the handheld programmer.

- Do not use the Quick Start Wizard via the handheld programmer to modify individual parameters. (Perform customization only after the Quick Start has been completed.)
- Each time the Quick Start Wizard is initiated via the handheld programmer, the startup settings are factory defaults. The Wizard will not recall previous user-defined settings. (Note: Values set using the Quick Start Wizard via AMS Device Manager are saved and recalled each time it is initiated.)
- When using AMS Device Manager, the Resource and LTB Blocks must be set to Out
 of Service mode before any configuration changes (changes to parameters
 affecting block output) can be written. The blocks do not need to be set to Out of
 Service when the Quick Start Wizard is initiated via the handheld programmer.

1. Quick Start

Note: For detailed instructions see Quick Start Wizard via the handheld programmer on page 36 or Quick Start Wizard via AMS Device Manager on page 45.

2. Setup

Notes:

- See Enter PROGRAM mode on page 33 or Operating via AMS Device Manager on page 40 for instructions.
- Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.
- Values shown in the following tables can be entered via the handheld programmer.

2.1. Identification

2.1.1. Tag

Read only. Text that can be used in any way. A recommended use is as a unique label for a field device in a plant Limited to 32 ASCII characters.

Note: The tag can only be changed from a remote master such as NIFBUS-Configurator or DeltaV.

2.1.2. Descriptor

Read only. Text that can be used in any way. Limited to 32 ASCII characters. No specific recommended use.

To access this parameter via AMS Device Manager see **Identification** under **Identification** (**RESOURCE**) on page 66.

2.1.3. Message

Read only. Text that can be used in any way. Limited to 32 ASCII characters. No specific recommended use.

To access this parameter via AMS Device Manager see **Identification** under **Identification** (**RESOURCE**) *on page 66*.

2.2. Device

2.2.1. Hardware Revision

Read only. Corresponds to the electronics hardware of the Field Device.

2.2.2. Firmware Revision

Read only. Corresponds to the software or firmware that is embedded in the Field Device

223 Loader Revision

Read only. Corresponds to the software used to update the Field Device.

2.3. Sensor

2.3.1. Unit

Sensor measurement unit

Values		m, cm, mm, ft, in
*uiuoo	*	m

2.3.2. Level Unit

Select engineering units for Level.

Options		m, cm, mm, ft, in, %
Options	*	%

2.3.3. PV¹⁾ (volume/level) Units

Notes:

- · Default unit of AIFB 1 or 2 is percent.
- You can select a different unit for your application.

Select units for either volume or level.

Level Values		m, cm, mm, ft, in, %
Volume Values		liter, gal, ImpGal, %
Percent Value	*	%

2.3.4. Temperature Units

Selects the engineering unit to be displayed with the value representing temperature.

Options		DEGC, DEGF, DEGR, K
Options	*	DEGC

2.3.5. Material

Automatically configures the device to operate in the chosen application type, by changing one or more of the following parameters: Propagation Factor (25.3.), Position Detect (25.7.2.), and/or CLEF (Constrained Leading Edge Fit) Range (25.7.4.).

20	*	וושטום	
Options		LIQUID LOW DK ^{a)} (low dielectric liquid – CLEF algorithm enabled)	
Related parameters	Pos	Propagation Factor (2.5.3.) Position Detect (2.5.7.2.) CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.)	

a) dK < 3.0

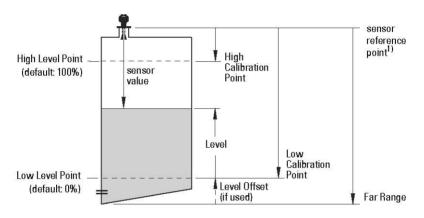
You can configure each of the related parameters, to suit your particular application.

PV (Primary Value): the output from the Level Transducer Block. See Level Transducer Block (LTB) and How the LTB works: in manual Foundation Fieldbus for Level Instruments (7ML19985MP01) for more details.

2.3.6. Loss of Echo (LOE) Timer

Note: See Loss of Echo (LOE) on page 150 for more detail.

Sets the time to elapse since the last valid reading, before a fault code is reported.


Values	Range: 0 to 7200 seconds
Values	Default: 100 seconds

2.3.7. Calibration

2.3.7.1. Low Calibration Point

Distance from sensor reference point¹⁾ to Low Calibration Point (corresponding to Low Level Point). Unit is defined in **Unit (2.3.1.)**

Values	Range: 0 to 30 m. Default: 20.000 m
Related	Unit (2.3.1.)
parameters	Far Range (2.5.2.)

23.7.2. High Calibration Point

Distance from sensor reference point¹⁾ to High Calibration Point (corresponding to High Level Point). Unit is defined in Unit (2.3.1.).

Range: 0 to 30 m. Default: 0.00 m	
	Range: 0 to 30 m. Default: 0.00 m

2.3.7.3. Sensor Offset

A constant offset (negative or positive) that can be added to the sensor value² to compensate if the sensor reference point has shifted. (For example, this could result from adding a thicker gasket or reducing the standoff/nozzle height.) The units are defined in Unit (2.3.1.).

The point from which level measurement is referenced (see Flat Faced Flange on page 16 and Threaded Horn Antenna with extension on page 12).

²⁾ See Low Calibration Point (2.3.7.1.) for an illustration.

Values	Range: -99.999 to 99.999. Default: 0.000 m		
Related parameters	Unit (2.3.1.)		

See **How the LTB works:** in manual *Foundation Fieldbus for Level Instruments (7ML19985MP01)* for more details on sensor offset.

2.3.7.4. Low Level Point

The level when the material is at Low Calibration Point. The unit is defined in Level Unit (232).

Values	Range: -999999 to +999999	
values	Default 0%	7

2.3.7.5. High Level Point

The level when the material is at High Calibration Point. The unit is defined in Level Unit (2.3.2).

Values	Range: -999999 to +999999
	Default 100%

23.7.6. Level Offset

A constant offset that can be added to Level. The unit is defined in Level Unit (2.3.2.).

Values	Range: -999999 to +999999
Values	Default 0%

23.7.7. Antenna

Read only. Identifies horn configuration [Near Range (2.5.1.) is automatically adjusted to suit].

2.3.8. Rate

2.3.8.1. Response Rate

Sets the reaction speed of the device to measurement changes.

Note: Changing Response Rate resets Fill Rate per Minute (2.3.8.2.), Empty Rate per Minute (2.3.8.3.), and Shots (2.5.6.).

Response Rate (2.3.8.1.)		Fill Rate per Minute (2.3.8.2.)/ Empty Rate per Minute (2.3.8.3.)	Shots (2.5.6.)	
*	Slow	0.1 m/min (0.32 ft/min)	25	
	Medium	1.0 m/min (3.28 ft/min)	10	
	Fast	10.0 m/min (32.8 ft/min)	5	

Use a setting just faster than the maximum filling or emptying rate (whichever is faster).

2.3.8.2. Fill Rate per Minute

Defines the maximum rate at which the reported sensor value¹⁾ is allowed to increase. Allows you to further adjust the SITRANS LR250 response to increases in the actual material level. Fill Rate is automatically updated whenever **Response Rate (2.3.8.1.)** is altered.

	Range: 0 to 999999 m / min.			
	Response Rate (2.3.8.1.)		Fill Rate	
Options	*	Slow	0.1 m/min (0.32 ft/min)	
		Medium	1.0 m/min (3.28 ft/min)	
		Fast	10.0 m/min (32.8 ft/min)	
Altered by:	Response Rate (2.3.8.1.)			
Related parameters	Le	Level Unit (2.3.2.)		

Enter a value slightly greater than the maximum vessel-filling rate, in units per minute.

23.8.3. Empty Rate per Minute

Defines the maximum rate at which the reported sensor value¹⁾ is allowed to decrease. Adjusts the SITRANS LR250 response to decreases in the actual material level. Empty Rate is automatically updated whenever **Response Rate (23.8.1.)** is altered.

	Range: 0 to 999999 m / min.			
	Response Rate (2.3.8.1.)		Empty Rate	
Options	*	Slow	0.1 m/min (0.32 ft/min)	
		Medium	1.0 m/min (3.28 ft/min)	
		Fast	10.0 m/min (32.8 ft/min)	
Altered by:	Response Rate (2.3.8.1.)			
Related parameters	Level Unit (2.3.2.)			

Enter a value slightly greater than the vessel's maximum emptying rate, in units per minute.

2.4. Linearization

2.4.1. Volume

Carries out a volume conversion from a level value.

24.1.1. Vessel Shape

Defines the vessel shape and allows the LR250 to calculate volume instead of level. If **None** is selected, no volume conversion is performed. Select the vessel shape matching the monitored vessel or reservoir (see table on following page.)

The value produced by the echo processing which represents the distance from sensor reference point to the target (see Low Calibration Point (2.3.7.1.) on page 99 for an illustration).

	Vessel Shape	LCD DISPLAY/ Description	Also required
*	None	NONE/ No volume calculation required	N/A
		CYLINDER/ Flat end horizontal cylinder	maximum volume
		SPHERE/ Sphere	maximum volume
		LINEAR/ Upright, linear (flat bottom)	maximum volume
	A	CONICAL BOT/ Conical or pyramidal bottom	maximum volume, dimension A
		PARABOLIC BOT/Parabolic bottom	maximum volume, dimension A
	A	HALF SPHERE BOT/ Half-sphere bottom	maximum volume, dimension A
	A	FLAT SLOPED BOT/ Flat sloped bottom	maximum volume, dimension A
	A L	PARABOLIC ENDS/ Parabolic end horizontal cylinder	maximum volume, dimension A, dimension L
		LINEAR TABLE ^{a)} / Linearization table (level/volume breakpoints)	maximum volume, level breakpoints, volume breakpoints

Linearization Table must be selected in order for level/volume values [see XY Index (2.4.1.5.)] to be transferred.

24.1.2. Maximum Volume

The maximum volume of the vessel. Units are defined in **PV (volume/level) Units (23.3.).** Enter the vessel volume corresponding to High Calibration
Point. The volume calculation is based on the maximum volume and scaled
according to the vessel shape selected. If no vessel shape is entered, the
default is 100, and the reading will be a percentage value.

Values	Range: 0.0000 to 999999	
	Default: 100.0	
Related Parameters	Low Calibration Point (2.3.7.1.) High Calibration Point (2.3.7.2.) Vessel Shape (2.4.1.1.)	

For readings in volumetric units instead of percentage values:

- a) Select a volumetric unit from PV (volume/level) Units (2.3.3.).
- b) Enter the vessel volume corresponding to High Calibration Point.

24.1.3. Dimension A

The height of the vessel bottom in Level Units when the bottom is conical, pyramidal, parabolic, spherical, or flat-sloped. If the vessel is horizontal with parabolic ends, the depth of the end. See **Vessel Shape (24.1.1.)** for an illustration.

Values	Range: 0.0000 to 999999 in Level Units
values	Default: 0.0
Related Parameters	Vessel Shape (2.4.1.1.)

2414 Dimension I

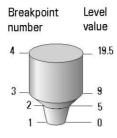
Length of the cylindrical section of a horizontal parabolic end vessel, in Level Units. See **Vessel Shape (24.1.1.)** for an illustration.

Values	Range: 0.0000 to 999999 in Level Units
Values	Default: 0.0
Related Parameters	Vessel Shape (2.4.1.1.)

24.1.5. XY Index

Level/Volume breakpoints allow you to define a complex vessel shape as a series of segments. A value is assigned to each level breakpoint and a corresponding value is assigned to each volume breakpoint

Volume values are defined in volume units and can be percent or volumetric; level values are defined in level units, and can be percent or linear.


Level Values ¹	Range: 0.0000 to 999999 (m, cm, mm, ft, in, %) Default: 0.0
Volume Values ²	Range: 0.0000 to 999999 (% or volumetric units)
	Default: 0.0

¹⁾ See Level Unit on page 98.

See PV (volume/level) Units on page 98.

Enter up to 32 level breakpoints, where the corresponding volume is known. The values corresponding to 100% and 0% levels must be entered. The breakpoints can be ordered from top to bottom, or the reverse.

Example (values are for example purposes only)

Breakpoint Number	Level value (m)	Volume value (I)
1	0	0
2	5	500
3	9	3000
4	19.5	8000

Entering breakpoints via the hand-held programmer:

- The default for level values is percent: if you want to select units instead, navigate to Sensor (2.3.) > Level Unit (2.3.2.), and select the desired unit.
- b) Navigate to Sensor (2.3.) > PV (volume/level) Units (2.3.3.), and select the desired volume units.
- Go to XY Index (2.4.1.5.) and enter the number of the breakpoint you
 wish to adjust for example, for breakpoint 1 enter 1.
- Go to X Value (2.4.1.6.) and enter the level value for the breakpoint just identified.
- Go to Y Value (2.4.1.7.) and enter the volume value for the breakpoint just identified.
- Repeat steps (c) to (e) until values have been entered for all required breakpoints.

24.1.6. X Value

See XY Index (2.4.1.5.) on page 103.

24.1.7. Y Value

See XY Index (24.1.5.) on page 103.

Entering breakpoints via AMS: See Linearization (LTB) on page 53.

After completing the above steps you will need to configure AIFB 1 and/or AIFB 2 (See AIFB 1 (26.) and AIFB 2 (27.) for details.)

2.5. Signal Processing

In AMS Device Manager, see the General tab under **Signal Processing (LTB)** on page 55.

2.5.1. Near Range

The range in front of the device (measured from the sensor reference point^d) within which any echoes will be ignored. (This is sometimes referred to as "Blanking" or "Dead Zone".) The factory setting is 50 mm past the end of the horn, and the range is dependent on the horn type.

	Range: 0 to 33 m (0 to 108.27 ft)
Values	Default depends on antenna. Examples: 1.5° horn, Default = 0.185 m (7.28°) 4° horn, Default = 0.270 m (10.62°)
Related parameters	Unit (2.3.1.)

2.5.2. Far Range

Note: Far Range can extend beyond the bottom of the vessel.

Allows the material level to drop below Low Calibration Point without generating a Loss of Echo (LOE) state. See **Low Calibration Point (2.3.7.1.)** on page 99 for an illustration.

Values	Range: min. = Low Calibration Point max. = 33 m (108.27 ft) Default Low Calibration Point + 1 m (3.28 ft)
Related	Unit (2.3.1.)
Parameters	CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.) ^{a)}

The value set for Far Range becomes the CLEF Range maximum. If the value for Far Range is changed after a CLEF Range value is entered, CLEF Range is reset to its default (0.00 m).

Use this feature if the measured surface can drop below the Low Cal. Point in normal operation.

2.5.3. Propagation Factor

Notes:

- When operating in a stillpipe, values for CLEF (Constrained Leading Edge
 Fit) Range (2.5.7.4.), and for the Propagation Factor, should be set
 according to the pipe size. See the table below.
- For reliable results the horn size must be close to the pipe size.

Compensates for the change in microwave velocity due to propagation within a metal stillpipe instead of in free space.

Values	Range: 0.3 to 1.5 depending on pipe size.
Values	Default: 1.000

See Flat Faced Flange on page 16 and Threaded Horn Antenna with extension on page 12.

Nominal Pipe Size ^{a)}	40 mm (1.5")	50 mm (2")	80 mm (3")	100 mm (4")
Propagation Factor	0.9828	0.990	0.991	0.9965
CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.) settings	Low Cal Pt. minus 700 mm (2.29 ft)	Low Cal Pt. minus 700 mm (2.29 ft)	Low Cal Pt. minus 1000 mm (3.28 ft)	Low Cal Pt. minus 1000 mm (3.28 ft)

a) Since pipe dimensions may vary slightly, the propagation factor may also vary.

2.5.4. Minimum Sensor Value

The minimum usable value for the measuring range, in units defined in **Unit** (23.1.). (Default = 0.0 m)

To view this parameter via AMS Device Manager see **Range** under **Signal Processing (LTB)** *on page 55.*

2.5.5 Maximum Sensor Value

The maximum usable value for the measuring range, in units defined in **Unit** (23.1.). (Default = 33.0 m)

To view this parameter via AMS Device Manager see **Range** under **Signal Processing (LTB)** *on page 55.*

2.5.6. Shots

The number of echo profile samples averaged to produce a measurement

Values	Range: 1 to 25
values	Default: 25 ^{a)}

To meet accuracy specification, the number of shots must be set to 25 (see **Performance** on page 7).

2.5.7. Echo Select

25.7.1. Algorithm

Selects the algorithm to be applied to the echo profile to extract the true echo.

Options	TF	*	True First echo	
,	F		First echo	
	L		Largest echo	
	BLF		Best of Largest and First echo	

2.5.7.2. Position Detect

Defines where on the echo the distance measurement is determined. (See **Position Detect (2.5.7.2)** on page 146 for more detail.)

		Center		
Options	*	Hybrid (Center and CLEF)		
		CLEF (Constrained Leading Edge Fit)		
Related	CL	CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.)		
parameters	GL	CLEF (Constrained Leading Eage Fit) hange (2.5.7.4.)		

If the vessel bottom is being reported as the level instead of the actual material level (at low level conditions), or if the dielectric constant of the liquid to be monitored is less than 3, we recommend setting Position Detect to **Hybrid** and **CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.)** to 0.5 m (1.64 ft).

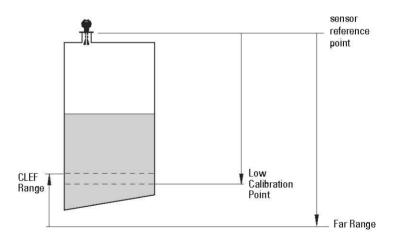
25.7.3. Echo Threshold

Sets the minimum echo confidence that the echo must meet in order to prevent a Loss of Echo condition and the expiration of the LOE timer. When Confidence (25.9.1.) exceeds Echo Threshold (25.7.3.), the echo is accepted as a valid echo and is evaluated.

Values	Range: 0 to 99
	Default: 5
Related Parameters	Loss of Echo (LOE) Timer (2.3.6.) Confidence (2.5.9.1.)

Use this feature when an incorrect material level is reported.

25.7.4. CLEF (Constrained Leading Edge Fit) Range


Used mainly to allow correct level reporting for low dK materials which may otherwise cause an incorrect reading in an empty or almost empty vessel. CLEF Range is the region where the CLEF algorithm is used when **Hybrid** is selected in **Position Detect (25.7.2)**. Above that point the Center algorithm is used. (For more detail see **Position Detect (25.7.2)** on page 146).

When **Material (2.3.5.)** is set to **Liquid Low dK**, CLEF Range is reset to 0.5 m (1.64 ft), and we recommend **Position Detect (2.5.7.2.)** be set to **Hybrid**.

Note: The CLEF algorithm is used from tank empty level up to the level defined by the CLEF range (see illustration below). The CLEF algorithm uses Far Range value as empty level, therefore the value for CLEF Range must include the difference between Far Range and Low Calibration Point, plus any level to be managed by the CLEF algorithm above the Low Calibration Point

Values	Range: 0 to Far Range (25.2)
	Default: 0.00 m
Related parameters	Position Detect (2.5.7.2.) Far Range (2.5.2.) ^{a)}

a) If the value for Far Range is changed after a CLEF Range value is entered, CLEF Range is reset to its default (0.00 m).

2.5.8. Sampling

Provides a method of checking the reliability of a new echo before accepting it as the valid reading, based on numbers of samples above or below the currently selected echo.

25.8.1. Echo Lock

Note: Ensure the agitator is always running while SITRANS LR250 is monitoring the vessel, to avoid stationary blade detection.

Selects the measurement verification process. See Echo Lock (2.5.8.1.) on page 148 for more details.

	Lock Off (no verification)	
0-4:	Maximum Verification	
Options	* Material Agitator	
	Total Lock	
	Fill Rate per Minute (2.3.8.2.)	
Related parameters	Empty Rate per Minute (2.3.8.3.) Up Sampling (2.5.8.2.) Down Sampling (2.5.8.3.)	

For radar applications, Material Agitator is the most often used setting, to avoid agitator blade detection.

25.8.2. Up Sampling

Specifies the number of consecutive echoes that must appear above the echo currently selected, before the measurement is accepted as valid.

Values	Range: 1 to 50
	Default: 5

2.5.8.3. Down Sampling

Specifies the number of consecutive echoes that must appear below the echo currently selected, before the measurement is accepted as valid.

Values	Range: 1 to 50
	Default: 2 (see Related parameters)
Related parameters	Echo Lock (2.5.8.1.) If Echo Lock set to any value other than its default (2), then Down Sampling default = 5.

2.5.9. Echo Quality

2.5.9.1. Confidence

Indicates echo reliability: higher values represent better echo quality. The display shows the echo confidence of the last measurement. **Echo**

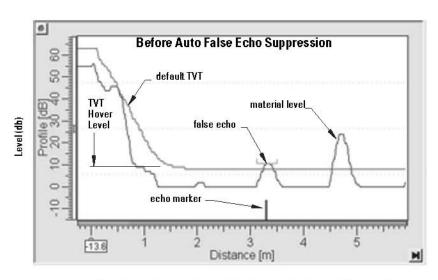
Threshold (25.7.3.) defines the minimum criterion for echo confidence.

Values (view only)	Range: 0 to 99
Related Parameters	Echo Threshold (2.5.7.3.)

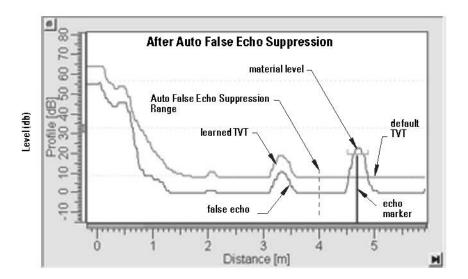
25.9.2. Echo Strength

Displays the absolute strength (in dB above 1 µV rms) of the echo selected as the measurement echo.

Values (view only)	Range: -20 to 99
--------------------	------------------


2.5.10. TVT (Auto False Echo Suppression) Setup

2.5.10.1. Auto False Echo Suppression


Used together with **Auto False Echo Suppression Range (2.5.10.2.)** to screen out false echoes in a vessel with known obstructions. A 'learned TVT' (time varying threshold) replaces the default TVT over a specified range. See **Auto False Echo Suppression (2.5.10.1.)** on page 148 for a more detailed explanation.

Notes:

- Make sure material level is below all known obstructions when Auto False Echo Suppression is used to learn the echo profile. (An empty or almost empty vessel is recommended.)
- Note the distance to material level when Auto False Echo learns the environment. Set Auto False Echo Suppression Range to a shorter distance to avoid the material echo being screened out.
- Set Auto False Echo Suppression and Auto False Echo Suppression Range during startup, if possible.
- If the vessel contains an agitator it should be running.
- Before adjusting these parameters, rotate the instrument for best signal (lower false-echo amplitude).

 Determine Auto False Echo Suppression Range. Measure the actual distance from the sensor reference point to the material surface using a rope or tape measure. b) Subtract 0.5 m (20°) from this distance, and use the resulting value.

To use Auto False Echo Suppression via AMS Device Manager note value calculated in step b) and see Auto False Echo Suppression on page 56.

To set Auto False Echo Suppression via the handheld programmer:

		OFF	Default TVT will be used.
Options	*	ON	'Learned' TYT will be used.
		LEARN	'Learn' the TVT.

- c) Go to Auto False Echo Suppression Range (2.5.10.2.) and enter the value calculated in step b).
- d) Go to Auto False Echo Suppression (2.510.1.) and press
 - RIGHT arrow let to open Edit Mode
- Select Learn. The device will automatically revert to On (Use Learned TVT) after a few seconds.

2.5.10.2. Auto False Echo Suppression Range

Defines the endpoint of the Learned TVT distance. Units are defined in Unit (2.3.1.).

Values	Range: 0.00 to 30.00 m
	Default: 1.00 m

- a) Press RIGHT arrow to open Edit mode.
- b) Enter the new value and press RIGHT arrow to accept it.
- c) Set Auto False Echo Suppression (2.5.10.1.)

25.10.3. Hover Level 1)

Defines how high the TVT (Time Varying Threshold) curve is placed above the noise floor of the echo profile, as a percentage of the difference between the peak of the largest echo in the profile and the noise floor. See Before Auto False Echo Suppression on page 110 for an illustration.)

Values	Range: 0 to 100%
values	Default: 40%

When the device is located in the center of the vessel, the TVT hover level may be lowered to increase the confidence level of the largest echo.

25.10.4. Shaper Mode

Enables/disables TVT Shaper (2.5.11.).

Options	*	OFF
Options		ON

2.5.11. TVT Shaper

Notes:

- The range is -50 to +50 dB.
- Shaper Mode (2.5.10.4.) must be turned ON in order for TVT shaper points to be transferred

Adjusts the TVT (Time Varying Threshold) at a specified range (breakpoint on the TVT). This allows you to reshape the TVT to avoid unwanted echoes. There are 40 breakpoints arranged in 5 groups. (We recommend using AMS Device Manager to access this feature.)

To use TVT shaper via LUI (local user interface):

- a) Go to Shaper Mode (2.5.10.4.) and select option DN.
- b) In TVT shaper, go to Breakpoints 1-9 (2.5.11.1.).
- Open TVT Breakpoint 1 and enter the TVT Offset value (between –50 and +50 dB).
- d) Go to the next Breakpoint and repeat step (c) until all desired breakpoint values have been entered.

25.11.1. Breakpoints 1-9

Values	Range: -50 to +50 dB
vulues	Default 0 dB

2.5.11.2 Breakpoints 10-18

Values	Range: -50 to +50 dB
values	Default 0 dB

For an illustration, see *Before Auto False Echo Suppression* and **After Auto False Echo Suppression** on page 111.

2.5.11.3. Breakpoints 19-27

Values	Range: -50 to +50 dB
¥uiuo3	Default 0 dB

2.5.11.4. Breakpoints 28-36

Values	Range: -50 to +50 dB
ruinos	Default 0 dB

2.5.11.5. Breakpoints 37 - 40

Values	Range: -50 to +50 dB	
values	Default 0 dB	2

To access **TVT Shaper** via AMS Device Manager see **TVT Shaper** on page 57

2.6. AIFB 1

Notes:

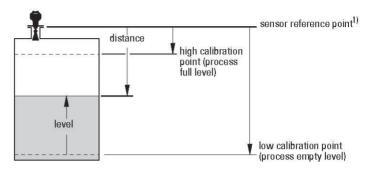
- Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.
- All AIFB parameters are read only via LUI and AMS Device Manager, and can only be changed using a remote host such as DeltaV or NI-FBUS Configurator.
- AIFB 1 and AIFB 2 are not active out of the box. These blocks will show Out of Service on the LCD at startup. If these blocks are needed for an FF application, use a tool such as DeltaV or NI-FBUS Configurator to configure and schedule the blocks. See **Configuration** in manual *Foundation Fieldbus for Level Instruments* (7ML19985MP01) for further details.

2.6.1. Static Revision Number

The revision level of the static data associated with Analog Input Function Block 1. The Static Revision No. is updated whenever a configuration parameter is changed.

2.6.2. Mode

Used to request an operating mode from the Analog Input Function Block.


k.	Automatic Mode (AUTO)
Options	Manual Mode (MAN)
	Out of Service (OOS)

Allows you to put the SITRANS LR250 into Out of Service Mode and then reset it to Automatic Mode. Manual Mode can be used when simulating output. See **Simulation** in manual *Foundation Fieldbus for Level Instruments* (7ML19985MP01) for more details.

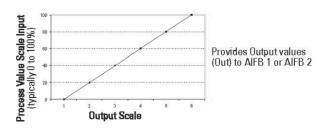
263 Channel

Used to select between the different Level Transducer Block outputs.

Options		Description	Reference point
LEVEL/VOLUME		Level value converted to Volume [through Linearization (24.)]	Low Calibration Point
LEVEL	*	Level value	Low Calibration Point
DISTANCE		Distance value	Sensor Reference Point

2.6.4. Input Scaling

26.4.1. Lower Value


Defines the operational lower range value of the input value (Process Value Scale) in PV (volume/level) Units. Process Value Scale normalizes the input value to a customer-defined range.

Values	Range: -999999 to 999999
vuluos	Default 0 %

26.4.2. Upper Value

Defines the operational upper range value of the input value (Process Value Scale) in PV (volume/level) Units. Process Value Scale normalizes the input value to a customer-defined range.

Values	Range: -999999 to 999999
Values	Default: 100 %

The point from which High and Low Calibration points are referenced: see **Dimensions** on page 11 and **Threaded Horn Antenna with extension** on page 12.

26.4.3. Unit

Engineering unit to be displayed with the output value.

Options		m, cm, mm, ft, in, cu m, L, HL, cu in, cu ft, cu yd, gal, imp gal, bushels, Bbl, Bbl liquid, %, PA, Follow out unit
	*	%

26.4.4. Decimal Point

Read only. The number of digits to display after the decimal point (set to 0 decimal places).

2.6.5. Output Scaling

Scales the Process Variable. The function block parameter OUT SCALE contains the values of the lower limit and upper limit effective range in AIFB 1 units.

2651 Lower Value

Defines the operational lower range value of the output value in AIFB 1 units.

Values	Range: -999999 to 999999
Fuluos	Default 0 %

26.5.2. Upper Value

Defines the operational upper range value of the output value in AIFB 1 units.

Values	Range: -999999 to 999999	
values	Default 100 %	

26.5.3. Unit

Engineering unit to be displayed with the output value

Options		m, cm, mm, ft, in, cu m, L, HL, cu in, cu ft, cu yd, gal, imp gal, bushels, Bbl, Bbl liquid, %, PA, Follow out unit
	*	%

26.5.4. Decimal Point

Read only. The number of digits to display after the decimal point (set to two decimal places).

2.6.6. Alarms & Warnings

26.6.1. High Limit Alarm

The setting for the upper alarm limit in AIFB 1 units.

Options	Range: -Infinity to Infinity
Орионо	Default Inf

26.6.2. High Limit Warning

The setting for the upper warning limit in AIFB 1 units.

Options	Range: -Infinity to Infinity	
Ориона	Default Inf	

26.6.3. Low Limit Warning

The setting for the lower warning limit in AIFB 1 units.

Options	Range: -Infinity to Infinity	
	Default -Inf	

26.6.4. Low Limit Alarm

The setting for the lower alarm limit in AIFB 1 units.

Options	Range: -Infinity to Infinity
options	Default: -Inf

26.6.5. Limit Hysteresis

Hysteresis is used to adjust the sensitivity of the trigger for alarm messages. It is used to compensate when a process variable fluctuates around the same value as a limit. A high level alarm occurs when a value exceeds an upper limit. The alarm's status remains true until the value drops below the limit minus the alarm hysteresis. The directions are reversed for low limit detection.

Options	Range: 0 to 50
Ориона	Default: 0.50

Enter a value for the hysteresis here, to be used for all warnings and alarms. The units are the same as the Output scale, i.e. AIFB 1 units.

2.6.7. Display

26.7.1. Filter Time Constant

The time constant for the damping filter. The damping filter smooths out the response to a sudden change in level. This is an exponential filter and the engineering unit is always in seconds. See **Damping** on page 150 for more detail.)

Values	Range 0 to 600 s
values	Default: 0 ^{a)}

To meet accuracy specification, Filter Time Constant (PV_FTIME) must be changed from default of 0.0 s to a minimum of 10.0 seconds (see **Performance** on page 7).

2.7. AIFB 2

See AIFB 1 (26.): the parameters for AIFB 2 are identical to AIFB 1.

2.8. Measured Values

(for diagnostic purposes)

Read only. Allows you to view measured values for diagnostic purposes.

2.8.1. Main Output (PV- Primary Value)

The value for level, or volume (if volume conversion is selected).

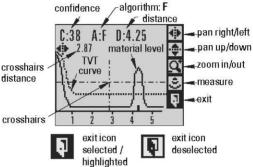
In AMS Device Manager, see **Process Variables (Level Transducer Block-LTB)** on page 79.

2.8.2. Output, no linearization (SV1 – Secondary Value 1)

The value for level.

2.8.3. Output, no level offsets (SV2 - Secondary Value 2)

The value for distance.


3. Diagnostics

3.1. Echo Profile

Allows you to request the current echo profile via the handheld programmer, or via AMS Device Manager. For more detail see **Echo Processing** on page 145.

To request a profile via AMS Device Manager see Echo Profile on page 58.

To request a profile via the handheld programmer:

- a) In PROGRAM mode, navigate to Level Meter > DIAG > Echo Profile (3.1)
- b) Press **RIGHT arrow** b to request a profile.
- c) In the Profile screen, press **UP arrow** to select the **Measure** icon, and **RIGHT arrow** to update the profile.
- d) Press **DOWN arrow** to select the **Exit** icon, then **RIGHT arrow** to return to previous menu.

3.2. Fault Reset

Clears faults (see chart below).

Clearing a fault in one parameter of a 'maintenance pair', automatically clears a fault in the second parameter of the pair. For example, entering S3 or S4 will clear a fault on Device Lifetime Reminder 1 (Maintenance Required), and on Device Lifetime Reminder 2 (Maintenance Demanded). This applies when clearing faults via the handheld programmer, or the 375 Field Communicator.

Fault Code	Description	
S3	Device Lifetime Reminder 1 (Maintenance Required)	
S4	Device Lifetime Reminder 2 (Maintenance Demanded)	
S6	Sensor Lifetime Reminder 1 (Maintenance Required)	
S7	Sensor Lifetime Reminder 2 (Maintenance Demanded)	
// Land	The state of the s	

Fault Code	Description (cont'd)	
S8	Device Service Reminder 1 (Maintenance Required)	
S9	Device Service Reminder 2 (Maintenance Demanded)	
S12	Internal Temperature High	
S17	Calibration Schedule Reminder 1 (Maintenance Required)	
S18	Calibration Schedule Reminder 2 (Maintenance Demanded)	

To clear a fault using the handheld programmer:

a) Enter the fault code number then press **RIGHT arrow** .

3.3. Electronics Temperature

To access the following parameters via AMS Device Manager see **Electronics Temperature** under **Maintenance & Diagnostics (LTB)** on page 59.

3.3.1. Minimum Value

The minimum recorded internal electronics temperature, reported in units defined in **Temperature Units (23.4.)**.

3.3.2. Maximum Value

The maximum recorded internal electronics temperature, reported in units defined in **Temperature Units (23.4)**.

3.4. Peak Values

3.4.1. Minimum Measured Value

The minimum recorded Sensor value, reported in units defined in Unit (2.3.1.).

342 Maximum Measured Value

The maximum recorded Sensor value, reported in units defined in Unit (23.1.).

4. Service

Note: Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.

4.1. Master Reset

Notes:

- The following parameters are not reset by any reset type: Write Protection, PIN to Unlock, Auto False Echo Suppression Range, Learned TVT.
- While an FF Object Dictionary Reset is in progress, do not perform an action using the local display interface until the reset is complete. This could cause a temporary loss of communications

Reset Type	Result
Factory Defaults ^{a)}	Default. Resets all user parameters to the manufacturer's default settings. Following this type of reset, complete reprogramming is required.
Standard Defaults	Resets all parameters to standard default settings.
Informational	Resets parameters such as Block Descriptor, Strategy, Device Install Date, Device Message.
Functional ^{a)}	Resets parameters that control device behavior and functionality (such as Low Calibration Point).
Warm Start	Has the same effect as recycling power to the device.
FF Object Dictionary	Resets the FF standard block profile parameters (such as block tags) to their specified defaults. This option also clears any function block parameters and device schedule ^{b)} set by the user.

- The only difference between Factory Defaults and Functional reset is that Factory Defaults resets maintenance parameters, such as device and sensor wear, calibration and maintenance timers. Functional reset does not reset these parameters.
- b) See **Data transmission** in manual *Foundation Fieldbus for Level Instru- ments* (7 ML19985MP01) for further details.

To access via AMS Device Manager see **Master Reset** under **Operation** (**RESOURCE**) on page 67.

To perform a reset via the handheld programmer:

- a) Press **RIGHT arrow** to open Edit Mode then scroll down to the desired reset type and press **RIGHT arrow** to select it.
- b) Press **LEFT arrow** to exit.

After performing a master reset, the device will stop measuring, the Resource and Level Transducer Blocks will go to **Out of Service**, and the LUI will show the **Quick Start Wizard** until the device is configured.

4.2. Remaining Device Lifetime

Notes:

- Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.
- Four sets of parameters allow you to monitor the Device/Sensor Lifetimes and set up Maintenance/Service schedules, based on operating hours instead of a calendar-based schedule. See also Remaining Sensor Lifetime (4.3.), Service Schedule (4.4.), and Calibration Schedule (4.5.).
- Performing a reset to Factory Defaults will reset all the Maintenance Schedule parameters to their factory defaults.
- The device operates in years. To view Remaining Device Lifetime parameters in hours (via AMS Device Manager only) see Remaining Device Lifetime on page 69.

The device tracks itself based on operating hours and monitors its predicted lifetime. You can modify the expected device lifetime, set up schedules for maintenance alerts, and acknowledge them.

The maintenance warnings and alarms are communicated to the end user through status information. This information can be integrated into any Asset Management system.

To access these parameters via AMS Device Manager see **Remaining Device Lifetime** under **Maintenance & Diagnostics (RESOURCE)** on page 69.

4.2.1. Lifetime Expected

Allows you to override the factory default.

	Units: years
Values	Range: 0 to 20 years
	Default: 10.00 years

4.2.2. Time in Operation

Read only. The amount of time the device has been operating.

4.2.3. Remaining Lifetime

Read only. Lifetime Expected (4.21.) less Time in Operation (4.2.2).

4.2.4. Reminder Activation

Allows you to enable a maintenance reminder.

(REMinder 1 (Maintenance REQuired)
		REMinder 2 (Maintenance DEManded)
Options		REMinders 1 AND 2 (Maintenance Required and Maintenance Demanded)
	*	OFF

- a) First set the reminder values in Reminder 1 (Required) (4.2.5.)/Reminder 2 (Demanded) (4.2.6.).
- b) Select the desired Reminder Activation option.

4.2.5. Reminder 1 (Required)

If Remaining Lifetime (4.23.) is equal to or less than this value, the device generates a Maintenance Required reminder.

Values	Range: 0 to 20 years
values	Default: 0.164 years

- a) Modify limit values as required.
- b) Set Reminder Activation (4.2.4.) to the desired option.

4.2.6. Reminder 2 (Demanded)

If Remaining Lifetime (4.2.3.) is equal to or less than this value, the device generates a Maintenance Demanded reminder.

Values	Range: 0 to 20 years
	Default 0.019 years

- a) Modify limit values as required.
- b) Set Reminder Activation (4.2.4.) to the desired option.

4.2.7. Maintenance Status

Indicates which level of maintenance reminder is active.

To display the level of maintenance reminder that is active in AMS Device Manager see Extended Diagnostics under Device Diagnostics (Resource Block - RESOURCE) on page 77.

4.2.8. Acknowledge Status

Indicates which level of maintenance reminder has been acknowledged.

4.2.9. Acknowledge

Acknowledges the current maintenance reminder.

To acknowledge an alert via the handheld programmer:

- a) Press RIGHT arrow twice to open parameter view and activate Edit Mode.
- b) Press RIGHT arrow b to acknowledge the alert.

4.3. Remaining Sensor Lifetime

Notes:

- Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.
- Four sets of parameters allow you to monitor the Device/Sensor Lifetimes and set up Maintenance/Service schedules, based on operating hours instead of a calendar-based schedule. See also Remaining Device Lifetime (4.2), Service Schedule (4.4.), and Calibration Schedule (4.5.).
- Performing a reset to Factory Defaults will reset all the Maintenance Schedule parameters to their factory defaults.
- The device operates in years. To view Remaining Sensor Lifetime parameters in hours (via AMS Device Manager only) see Remaining Sensor Lifetime on page 59.

The device monitors the predicted lifetime of the sensor (the components exposed to the vessel environment). You can modify the expected sensor lifetime, set up schedules for maintenance alerts, and acknowledge them.

To access these parameters via AMS Device Manager see **Remaining Sensor Lifetime** under **Maintenance & Diagnostics (LTB)** on page 59.

4.3.1. Lifetime Expected

Allows you to override the factory default

	Units: years
Values	Range: 0 to 20 years
	Default 10.00 years

4.3.2. Time in Operation

The amount of time the sensor has been operating. Can be reset to zero after performing a service or replacing the sensor.

To reset to zero:

 Via the handheld programmer, manually reset Time in Operation (4.3.2) to zero

4.3.3. Remaining Lifetime

Read only. Lifetime Expected (4.3.1.) less Time in Operation (4.3.2).

4.3.4. Reminder Activation

Allows you to enable a maintenance reminder.

		REMinder 1 (Maintenance REQuired)
		REMinder 2 (Maintenance DEManded)
Options		REMinders 1 AND 2 (Maintenance Required and Maintenance Demanded)
	*	OFF

- a) First set the limit values in Reminder 1 (Required) (4.3.5.)/Reminder 2 (Demanded) (4.3.6.).
- b) Select the desired Reminder Activation option.

4.3.5. Reminder 1 (Required)

If Remaining Lifetime (4.3.3) is equal to or less than this value, the device generates a Maintenance Required reminder.

Values	Range: 0 to 20 years
Tuidos	Default: 0.164 years

- a) Modify limit values as required.
- b) Set Reminder Activation (4.3.4.) to the desired option.

4.3.6. Reminder 2 (Demanded)

If Remaining Lifetime (4.3.3) is equal to or less than this value, the device generates a Maintenance Demanded reminder.

Values	Range: 0 to 20 years
values	Default: 0.019 years

- a) Modify limit values as required.
- b) Set Reminder Activation (4.3.4.) to the desired option.

437 Maintenance Status

Indicates which level of maintenance reminder is active.

To display the level of maintenance reminder in AMS Device Manager see Extended Diagnostics under Device Diagnostics (Level Transducer Block - LTB) on page 73.

4.3.8. Acknowledge Status

Indicates which level of maintenance reminder has been acknowledged.

4.3.9. Acknowledge

Acknowledges the current maintenance reminder.

To acknowledge an alert via the handheld programmer:

- a) Press RIGHT arrow twice to open parameter view and activate Edit Mode.
- b) Press RIGHT arrow > to acknowledge the alert.

4.4. Service Schedule

Notes:

- Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.
- Four sets of parameters allow you to monitor the Device/Sensor Lifetimes and set up Maintenance/Service schedules, based on operating hours instead of a calendar-based schedule. See also Remaining Device Lifetime (4.2), Remaining Sensor Lifetime (4.3), and Calibration Schedule (4.5.).
- Performing a reset to Factory Defaults will reset all the Maintenance Schedule parameters to their factory defaults.
- The device operates in years. To view Service Interval parameters in hours (via AMS Device Manager only) see Service Schedule on page 60.

The device tracks service intervals based on operating hours and monitors the predicted lifetime to the next service. You can modify the Total Service Interval, set schedules for Maintenance Alerts, and acknowledge them.

The maintenance warnings and alarms are communicated to the end user through status information. This information can be integrated into any Asset Management system.

To access these parameters via AMS Device Manager see **Service Schedule** under **Maintenance & Diagnostics (LTB)** on page 59.

4.4.1. Service Interval

User-configurable recommended time between product inspections.

	Units: years
Values	Range: 0 to 20 years
	Default: 1.0 year

4.4.2. Time Last Serviced

Time elapsed since last service. Can be reset to zero after performing a service.

To reset to zero:

 Via the handheld programmer, manually reset Time Last Serviced (4.4.2) to zero.

4.4.3. Time Next Serviced

Read only. Service Interval (4.4.1.) less Time Last Serviced (4.4.2).

4.4.4. Reminder Activation

Allows you to enable a maintenance reminder.

Values	*	TIMER OFF
		ON NO LIMITS
		ON REMinder 1 (Maintenance Required) checked
		ON REMinders 1 - 2 checked
	, , , , , , , , , , , , , , , , , , ,	ON - REMinder 2 (Maintenance Demanded) checked

- a) First set the limit values in Reminder 1 (Required) (4.4.5.)/Reminder 2 (Demanded) (4.4.6.).
- b) Select the desired Reminder Activation option.

4.4.5. Reminder 1 (Required)

If Time Next Serviced (4.4.3.) is equal to or less than this value, the device generates a Maintenance Required reminder.

Values	Range: 0 to 20 years
*diuco	Default: 0.164 years

- a) Modify limit values as required.
- b) Set Reminder Activation (4.4.4.) to the desired option.

4.4.6. Reminder 2 (Demanded)

If Time Next Serviced (4.4.3.) is equal to or less than this value, the device generates a Maintenance Demanded reminder.

Values	Range: 0 to 20 years
	Default: 0.019 years

- a) Modify limit values as required.
- b) Set Reminder Activation (4.4.4.) to the desired option.

4.4.7. Maintenance Status

Indicates which level of maintenance reminder is active

To display the level of maintenance reminder in AMS Device Manager see Extended Diagnostics under Device Diagnostics (Level Transducer Block - LTB) on page 73.

4.4.8. Acknowledge Status

Indicates which level of maintenance reminder has been acknowledged.

4.4.9. Acknowledge

Acknowledges the current maintenance reminder.

To acknowledge an alert via the handheld programmer:

- a) Press RIGHT arrow twice to open parameter view and activate Edit Mode
- b) Press RIGHT arrow > to acknowledge the alert.

4.5. Calibration Schedule

Notes:

- Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.
- Four sets of parameters allow you to monitor the Device/Sensor Lifetimes and set up Maintenance/Service schedules, based on operating hours instead of a calendar-based schedule. See also Remaining Device Lifetime (4.2), Remaining Sensor Lifetime (4.3.), and Service Schedule (4.4.).
- Performing a reset to Factory Defaults will reset all the Maintenance Schedule parameters to their factory defaults.
- The device operates in years. To view Calibration Interval parameters in hours (via AMS Device Manager only) see Calibration Schedule on page 70.

The device tracks calibration intervals based on operating hours and monitors the predicted lifetime to the next calibration. You can modify the Total Calibration Interval, set schedules for Maintenance Alerts, and acknowledge them.

To access these parameters via AMS Device Manager see Calibration Schedule under Maintenance & Diagnostics (RESOURCE) on page 69.

4.5.1. Calibration Interval

User-configurable recommended time between product calibrations.

	Units: years
Values	Range: 0 to 20 years
	Default: 1.0 year

4.5.2. Time Last Calibrated

Time elapsed since last calibration. Can be reset to zero after performing a calibration

To reset to zero:

Via the handheld programmer, manually reset Time Last Calibrated (4.5.2) to zero.

453 Time Next Calibrated

Read only. Calibration Interval (4.5.1.) less Time Last Calibrated (4.5.2).

4.5.4. Reminder Activation

Allows you to enable a maintenance reminder.

Values	* TIMER OFF	
	ON NO LIMITS	
	ON REMinder 1 (Maintenance Required) checked	ſ
	ON REMinders 1 - 2 checked	
	ON - REMinder 2 (Maintenance Demanded) check	ked

- a) First set the limit values in Reminder 1 (Required) (4.5.5.)/Reminder 2 (Demanded) (4.5.6.).
- b) Select the desired Reminder Activation option.

4.5.5. Reminder 1 (Required)

If Time Next Calibrated (4.5.3.) is equal to or less than this value, the device generates a Maintenance Required reminder.

Values	Range: 0 to 20 years	
	Default: 0.164 years	

- a) Modify limit values as required.
- b) Set Reminder Activation (4.5.4.) to the desired option.

4.5.6. Reminder 2 (Demanded)

If Time Next Calibrated (4.5.3) is equal to or less than this value, the device generates a Maintenance Demanded reminder.

Values	Range: 0 to 20 years
values	Default 0.019 years

- a) Modify limit values as required.
- b) Set Reminder Activation (4.5.4.) to the desired option.

4.5.7. Maintenance Status

Indicates which level of maintenance reminder is active

To display the level of maintenance reminder that is active in AMS Device Manager see Extended Diagnostics under Device Diagnostics (Resource Block - RESOURCE) on page 77.

4.5.8. Acknowledge Status

Indicates which level of maintenance reminder has been acknowledged.

4.5.9. Acknowledge

Acknowledges the current maintenance reminder.

To acknowledge an alert via the handheld programmer:

- a) Press RIGHT arrow twice to open parameter view and activate Edit Mode.
- b) Press RIGHT arrow > to acknowledge the alert.

4.6. Manufacture Date

The date of manufacture of the SITRANS LR250 (mm/dd/yyyyhh.mm).

4.7. Powered Hours

Displays the number of hours the unit has been powered up since manufacture.

To view via AMS Device Manager see **Wear** under *Maintenance & Diagnostics* (*RESOURCE*) on page 69.

4.8. Power-on Resets

The number of power cycles that have occurred since manufacture.

To view via AMS Device Manager see **Wear** under *Maintenance & Diagnostics* (*RESOURCE*) on page 69.

4.9. LCD Fast Mode

Notes:

- LCD Fast Mode takes effect only after 30 minutes of inactivity. (Each time the
 device is powered up, a further 30 minutes of inactivity is required.)
- LCD Fast Mode affects Measurement mode only; it has no effect on Navigation mode.

Enables a faster rate of measurement from the device by disabling most of the display area. Only the bar graph will be refreshed when LCD Fast Mode is set to ON.

Values	*	OFF
values		ON

4.10. LCD Contrast

The factory setting is for optimum visibility at room temperature and in average light conditions. Extremes of temperature will lessen the contrast.

Values	Range: 0 (High contrast) to 20 (Low contrast), Default: 10	
--------	--	--

Adjust the value to improve visibility in different temperatures and light conditions. Change the value in small steps to ensure you can continue to read the display.

4.11. Secondary Value

Use the secondary value to capture the menu navigation path to currently viewed parameter, and store it as the path to the custom secondary value.

While in Parameter View of the current parameter (see **Parameter view** on page 32), press the decimal point key. This stores the path to the current parameter in the Secondary Value, and displays the value for that parameter on the LCD display when in Measurement Mode. [See **The LCD Display** on page 31, area (6) under **Normal operation**.]

4.12. Simulate Enable

Replaces a physical jumper switch found on some FF devices to enable simulation when set to ON. (Available only via LUL)

Options	*	OFF	Simulation Disabled
Options		ON	Simulation Enabled

For more information on Simulation, see **Simulation (Input)** on page 50 in AMS Device Manager. [See also **Simulation** under **How the AIFB works** in manual *Foundation Fieldbus for Level Instruments* (7ML19985MP01)].

5. Communication

Note: Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.

5.1. Tag

Note: The tag can only be changed from a remote master such as NIFBUS-Configurator or DeltaV.

Read only. Text that can be used in any way. A recommended use is as a unique label for a field device in a plant Limited to 32 ASCII characters.

5.2. Device Address

Note: The address can only be changed from a remote master such as NIFBUS-Configurator or DeltaV. See **Addressing** in manual *Foundation Fieldbus for Level Instruments* (7ML19985MP01) for further details.

Read only. The unique address of the device on the network.

Values	Temporary range during initial commissioning: 248 - 251. Permanent range after commissioning complete (written to non-volatile memory in the device): 16-247
	The State of the Control of the Cont

5.3. Manufacturer

Name of manufacturer associated with this device.

5.4. Device Type Identification

Hexadecimal integer defined by Siemens to uniquely identify each product with manufacturer's Id. (LR250 FF device=0x1954.)

5.5. Device Revision

Manufacturer's revision number associated with this device.

5.6. ITK Version

Major revision number of the interoperability test case used to register this device.

6. Security

Note: Default settings in the parameter tables are indicated with an asterisk (*) unless explicitly stated.

6.1. Remote Access

6.1.1. Remote Lockout

Note: If remote lockout control is changed to limit remote access, it can be reset only via the handheld programmer.

Enables or disables programming via the network and AMS Device Manager.

Options	*	OFF	Remote operation enabled
options		ON	Remote operation disabled

6.2. Local Access

6.2.1. Write Protection

Note: Do not lose this number value.

Prevents any changes to parameters via AMS Device Manager or the handheld programmer.

		Range: 0 to 9999	
Options	*	Unlock value (stored in PIN to Unlock (6.2.2.)	Lock Off
		Any other value	Lock On

- To turn Lock On, key in any value other than the Unlock Value stored in PIN to Unlock (6.2.2).
- To turn Lock Off, key in the Unlock Value stored in PIN to Unlock (6.22).

To access this parameter via AMS Device Manager see **Local Access** under **Security (RESOURCE)** on page 72.

622 PIN to Unlock

Notes:

- Do not lose your Unlock Value: it cannot be displayed once Write Protection (6.21) has been set to a different value.
- A reset to Factory Defaults will not restore the unlock value at time of shipping.

Stores the value to be entered in Write Protection (6.21.) to unlock programming. If Write Protection (6.21.) is set to a different value PIN to Unlock (6.22) does not display the Unlock value

Handheld Programmer Values	Range: 0 to 999	99
	Value when shipped: 1954. Not restored by a reset to Factory Defaults.	
values		Display when Lock is on

To access this parameter via AMS Device Manager see **Local Access** under **Security (RESOURCE)** on page 72.

6.2.3. Local Operation

Enables or disables programming via the handheld programmer.

Options		DISABLED
Options	*	ENABLED

Note: Once disabled via the handheld programmer, the parameter is no longer visible via LUI and can only be reset using AMS Device Manager. However, if no communication activity exists for 30 seconds, the parameter will again be visible via LUI.

To access this parameter via AMS Device Manager see Local Display under Setup (LCD) on page 64.

7. Language

Selects the language to be used on the LCD.

Options	*	ENGLISH
		DEUTSCH
		FRANCAIS
		ESPANOL
		简体中文

To access this parameter via AMS Device Manager see **Local Display** under **Setup (LCD)** on page 64.

Appendix A: Alphabetical Parameter List

A-1	101
Acknowledge (4.2.9.)	121
Acknowledge (4.3.9.)	123
Acknowledge (4.4.9.)	125
Acknowledge (4.5.9.)	127
Acknowledge Status (4.2.8.)	121
Acknowledge Status (4.3.8.)	123
Acknowledge Status (4.4.8.)	125
Acknowledge Status (4.5.8.)	126
AIFB 1 (2.6.)	113
AIFB 2 (2.7.)	116
Alarms & Warnings (2.6.6.)	115
Algorithm (2.5.7.1.)	106
Antenna (2.3.7.7.)	100
Auto False Echo Suppression (2.5.10.1.)	110
Auto False Echo Suppression Range (2.5.10.2.)	111
Breakpoints 1-9 (2.5.11.1.)	112
Breakpoints 10-18 (2.5.11.2.)	112
Breakpoints 19-27 (2.5.11.3.)	113
Breakpoints 28-36 (2.5.11.4.)	113
Breakpoints 37 - 40 (2.5.11.5.)	113
Calibration (2.3.7.)	99
Calibration Interval (4.5.1.)	125
Calibration Schedule (4.5.)	125
Channel (2.6.3.)	114
CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.)	108
Communication (5.)	128
Confidence (2.5.9.1.)	109
Decimal Point (2.6.4.4.)	115
Decimal Point (2.6.5.4.)	115
Descriptor (2.1.2.)	97
Device (2.2.)	97
Device Address (5.2.)	128
Device Revision (5.5.)	129
Device Type Identification (5.4.)	129
Diagnostics (3.)	117
Dimension A (2.4.1.3.)	103
Dimension L (2.4.1.4.)	103

Display (2.6.7.)	116
Down Sampling (2.5.8.3.)	109
Echo Lock (2.5.8.1.)	109
Echo Profile (3.1.)	117
Echo Quality (2.5.9.)	109
Echo Select (2.5.7.)	106
Echo Strength (2.5.9.2.)	109
Echo Threshold (2.5.7.3.)	107
Electronics Temperature (3.3.)	118
Empty Rate per Minute (2.3.8.3.)	101
Far Range (2.5.2.)	105
Fault Reset (3.2.)	117
Fill Rate per Minute (2.3.8.2.)	101
Filter Time Constant (2.6.7.1.)	116
Firmware Revision (2.2.2.)	97
Hardware Revision (2.2.1.)	97
High Calibration Point (2.3.7.2.)	99
High Level Point (2.3.7.5.)	100
High Limit Alarm (2.6.6.1.)	115
High Limit Warning (2.6.6.2.)	115
Hover Level (2.5.10.3.)	112
Input Scaling (2.6.4.)	114
ITK Version (5.6.)	129
Language (7.)	130
LCD Contrast (4.10.)	127
LCD Fast Mode (4.9.)	127
Level Offset (2.3.7.6.)	100
Level Unit (2.3.2.)	98
Lifetime Expected (4.2.1.)	120
Lifetime Expected (4.3.1.)	122
Limit Hysteresis (2.6.6.5.)	116
Linearization (2.4.)	101
Loader Revision (2.2.3.)	97
Local Access (6.2.)	129
Local Operation (6.2.3.)	130
Loss of Echo (LOE) Timer (2.3.6.)	99
Low Calibration Point (2.3.7.1.)	99
Low Level Point (2.3.7.4.)	100
Low Limit Alarm (2.6.6.4.)	116
Low Limit Warning (2.6.6.3.)	116
Lower Value (2.6.4.1.)	114

Lower Value (2.6.5.1.)	115
Main Output (PV- Primary Value) (2.8.1.)	116
Maintenance Status (4.2.7.)	121
Maintenance Status (4.3.7.)	123
Maintenance Status (4.4.7.)	125
Maintenance Status (4.5.7.)	126
Manufacture Date (4.6.)	127
Manufacturer (5.3.)	128
Master Reset (4.1.)	119
Material (2.3.5.)	98
Maximum Measured Value (3.4.2.)	118
Maximum Sensor Value (2.5.5.)	106
Maximum Value (3.3.2.)	118
Maximum Volume (2.4.1.2.)	103
Measured Values (2.8.)	116
Message (2.1.3.)	97
Minimum Measured Value (3.4.1.)	118
Minimum Sensor Value (2.5.4.)	106
Minimum Value (3.3.1.)	118
Mode (2.6.2.)	113
Near Range (2.5.1.)	105
Output Scaling (2.6.5.)	115
Output, no level offsets (SV2 – Secondary Value 2) (2.8.3.)	117
Output, no linearization (SV1 – Secondary Value 1) (2.8.2.)	117
Peak Values (3.4.)	118
PIN to Unlock (6.2.2.)	130
Position Detect (2.5.7.2.)	107
Powered Hours (4.7.)	127
Power-on Resets (4.8.)	127
Propagation Factor (2.5.3.)	105
PV (volume/level) Units (2.3.3.)	98
Quick Start (1.)	97
Rate (2.3.8.)	100
Remaining Device Lifetime (4.2.)	120
Remaining Lifetime (4.2.3.)	120
Remaining Sensor Lifetime (4.3.)	121
Remaining Lifetime (4.3.3.)	122
Reminder 1 (Required) (4.2.5.)	121
Reminder 1 (Required) (4.3.5.)	122
Reminder 1 (Required) (4.4.5.)	124
Reminder 1 (Required) (4.5.5.)	126

Reminder 2 (Demanded) (4.2.6.)	121
Reminder 2 (Demanded) (4.3.6.)	123
Reminder 2 (Demanded) (4.4.6.)	124
Reminder 2 (Demanded) (4.5.6.)	126
Remote Access (6.1.)	129
Remote Lockout (6.1.1.)	129
Response Rate (2.3.8.1.)	100
Sampling (2.5.8.)	108
Secondary Value (4.11.)	128
Security (6.)	129
Sensor (2.3.)	97
Sensor Offset (2.3.7.3.)	99
Service (4.)	119
Service Interval (4.4.1.)	124
Service Schedule (4.4.)	123
Setup (2.)	97
Shaper Mode (2.5.10.4.)	112
Shots (2.5.6.)	106
Signal Processing (2.5.)	104
Simulate Enable (4.12.)	128
Static Revision Number (2.6.1.)	113
Tag (2.11.)	97
Tag (5.1.)	128
Temperature Units (2.3.4.)	98
Time Next Calibrated (4.5.3.)	126
Time Next Serviced (4.4.3.)	124
TVT (Auto False Echo Suppression) Setup (2.5.10.)	110
TVT Shaper (2.5.11.)	112
Unit (2.3.1.)	97
Unit (2.6.4.3.)	115
Unit (2.6.5.3.)	115
Up Sampling (2.5.8.2.)	109
Upper Value (2.6.4.2.)	114
Upper Value (2.6.5.2.)	115
Vessel Shape (2.4.1.1.)	101
Volume (2.4.1.)	101
Write Protection (6.2.1.)	129
X Value (2.4.1.6.)	104
XY Index (2.4.1.5.)	103
Y Value (2.4.1.7.)	104

Appendix B: Troubleshooting

- 1. Check the following:
 - There is power at the instrument.
 - · The LCD shows the relevant data.
 - If any fault codes are being displayed see General Fault Codes on page 138 for a
 detailed list.
- 2. Verify that the wiring connections are correct.
- See the table below for specific symptoms.

Symptom	Corrective action
The device cannot be programmed via FF.	Make sure Remote Lockout (6.1.1.) on page 129 is set to the unlock value Ensure block is Out of Service
You try to set a SITRANS LR250 parameter via remote communications but the parameter remains unchanged.	Ensure Remote Lockout (6.1.1.) on page 129 is disabled Ensure Write Protection (6.2.1.) on page 129 is set to the unlock value Ensure block is Out of Service
The AIFB output equals the display value but does not correspond to actual material level.	Ensure the Channel selection and Scaling in AIFB 1 are correctly entered Ensure AIFBs are scheduled and in Auto mode Ensure High Calibration Point is correctly entered View the echo profile to see if the wrong echo is being selected. If so, see Operation Troubleshooting on page 142 for possible causes and corrective action
The AIFB output is not equal to the displayed value (regardless of actual material level).	Confirm you are looking at the AIFB Output Ensure AIFBs are scheduled and in Auto mode Ensure scaling has not been programmed into the controller: all scaling should be performed by the LR250 Check the network to ensure the controller is communicating with the LR250
Not able to change parameters via LUI.	Ensure Local Operation (6.2.3.) on page 130 is enabled
Not able to change parameters, such as low calibration point.	Ensure block is in Out of Service mode

If you continue to experience problems, go to our website at

www.siemens.com/LR250, and check the FAQs for SITRANS LR250, or contact your Siemens Milltronics representative.

Device Status Icons

Icon	Priority Level	Meaning
4	Ĩ	Maintenance alarm Measurement values are not valid
:4	2	Maintenance warning: maintenance demanded immediately Measured signal still valid
÷	3	Maintenance required Measured signal still valid
1	1	Process value has reached an alarm limit
:‡	2	Process value has reached a warning limit
.‡	3	Process value has reached a tolerance limit
1	1	Configuration error Device will not work because one or more parameters/ components is incorrectly configured
:[]	2	Configuration warning Device can work but one or more parameters/components is incorrectly configured
.[]	3	Configuration changed Device parameterization not consistent with parameterization in project. Look for info text.
:T	1	Manual operation (local override) Communication is good; device is in manual mode.
:5,,	2	Simulation or substitute value Communication is good; device is in simulation mode or works with substitute values.

Icon	Priority Level	Meaning (contd)
-5	3	Out of operation Communication is good; device is out of action.
×		No data exchange
П		Write access enabled
a		Write access disabled

General Fault Codes

Notes:

• If more than one fault is present, the device status indicator and text for each fault alternate at 2 second intervals.

General Fault Codes			
Code / Icon	Meaning	Corrective Action	
S: 0	The device was unable to get a measurement within the LOE Timer period. Possible causes: faulty installation, antenna material buildup, foaming/other adverse process conditions, invalid calibration range.	 Ensure installation details are correct. Ensure no material buildup. Clean if necessary. Adjust process conditions to minimize foam or other adverse conditions. Correct range calibration. If fault persists, contact your local Siemens representative. 	
S: 2	Unable to collect profile because of a power condition that is outside the operat- ing range of the device.	Repair required. Contact your local Siemens representative.	
S: 3	Device is nearing its lifetime limit as defined in 4.23. Remaining Lifetime and has triggered a Maintenance Required reminder (4.25.).	Replacement is recommended.	
S: 4	Device is nearing its lifetime limit as defined in 4.23.Remaining Lifetime and has triggered a Maintenance Demanded reminder (4.26.).	Replacement is recommended.	
S: 6	Sensor is nearing its lifetime limit as defined in 4.3.3. Remaining Lifetime and has triggered a Maintenance Required reminder (4.3.5.).	Replacement is recommended.	
S: 7	Sensor is nearing its lifetime limit as defined in 4.3.3. Remaining Lifetime and has triggered a Maintenance Demanded reminder (4.3.6.).	Replacement is recommended.	
S: 8	Service interval as defined in 4.4.1. has expired and has triggered a Maintenance Required reminder (4.4.5.).	Perform service.	
S: 9	Service interval as defined in 4.4.7. has expired and has triggered a Maintenance Demanded reminder (4.4.6.).	Perform service.	
S: 10	Input parameters Low Calibration Point (2.3.7.1.) and High Calibration Point (23.7.2.) are the same.	 Check calibration settings of device. Ensure settings for High Calibration Point and Low Calibration Point are different. 	
S: 11	Internal temperature sensor failure.	Repair required: contact your local Siemens representative.	

	General Fault Code	s (cont'd)
Code / Icon	Meaning	Corrective Action
S: 12		 Relocate device and/or lower process temperature enough to cool device. Inspect for heat-related damage and contact your local Siemens representative if repair is required. Fault code will persist until a manual reset is performed using AMS or the LCD interface.
S: 17	Calibration interval as defined in 4.5.1. has expired and has triggered a Maintenance Required reminder (4.5.5.).	
S: 18	Calibration interval as defined in 4.5.1. has expired and has triggered a Maintenance Demanded reminder (4.5.6.).	
S: 22	Time Base Fault	Hardware problem: contact your local Siemens representative.
S: 28	Internal device failure caused by a RAM memory error.	Repair required: contact your local Sie- mens representative.
S: 29	EEPROM damaged.	Repair required: contact your local Sie- mens representative.
S: 31	Flash error.	Repair required: contact your local Sie- mens representative.
S: 33	Factory calibration for the internal temper- ature sensor has been lost.	Repair required: contact your local Sie- mens representative.
S: 34	Factory calibration for the device has been lost.	mens representative.
S: 35	Factory calibration for the device has been lost.	mens representative.
S: 36	Unable to start microwave module.	Cycle power. If fault persists, contact your local Siemens representative.
S: 37	Measurement hardware problem.	Cycle power. If fault persists, contact your local Siemens representative.
S: 38	Microwave module hardware failure: unable to calculate distance measure- ment.	Cycle power. If fault persists, contact your local Siemens representative: Repair required.

	General Fault Codes (cont'd)			
Code / Icon	Meaning	Corrective Action		
S: 43	Factory calibration for the radar receiver	Repair required: contact your local Sie-		
4	has been lost.	mens representative.		
S: 92	Corrupt Stack	Contact your local Siemens representa- tive and provide configuration file and FB schedule.		
S: 93	High Stack	Contact your local Siemens representative and provide configuration file and FB schedule.		
S: 94	Data Safe Read	Re-apply configuration and cycle power. If fault persists, contact your local Siemens representative.		
S: 95	Data Safe Write	Re-apply configuration and cycle power. If fault persists, contact your local Siemens representative.		
S: 96	Safe Process Data Corrupt	Contact your local Siemens representative and provide configuration file and FB schedule.		
S: 97	Board Voltage	Hardware problem: contact your local Siemens representative.		
S: 98	ADC Failed	Hardware problem: contact your local Siemens representative.		
S: 99	Prof. Clip	Hardware problem. If fault persists contact your local Siemens representative.		
S: 100	Few Shots	Hardware problem. If fault persists contact your local Siemens representative.		
S: 101	Meas. Err.	Reset configuration. If fault persists contact your local Siemens representative and provide configuration file and FB schedule.		
S: 102	No Shots	Hardware problem. If fault persists contact your local Siemens representative.		
S: 103	Meas. Corrupt	Contact your local Siemens representative and provide configuration file and FB schedule.		
S: 104	DMA Error	Hardware problem. If fault persists contact your local Siemens representative.		

	General Fault Codes (cont'd)			
Code / Icon	Meaning	Corrective Action		
S: 105	Seq. Corrupt	Contact your local Siemens representa- tive and provide configuration file and FB schedule.		
S: 106	Seq. CP	Re-install firmware (firmware upgrade). If fault persists contact your local Sie- mens representative.		
S: 107	Seq. Duration	Increase update rate limit. If fault per- sists contact your local Siemens repre- sentative.		
S: 108	BC Corrupt	Contact your local Siemens representa- tive and provide configuration file and FB schedule.		
S: 109	BC Start	Re-install firmware (firmware upgrade). If fault persists contact your local Siemens representative.		
S: 110	BC Stop	Re-install firmware (firmware upgrade). If fault persists contact your local Siemens representative.		
S: 111	BC Duration	Hardware problem. If fault persists contact your local Siemens representative.		
S: 112	CPU Fault	Hardware problem. If fault persists contact your local Siemens representative.		
S: 113	Data Bus	Hardware problem. If fault persists contact your local Siemens representative.		
S: 114	Addr Bus	Hardware problem. If fault persists contact your local Siemens representative.		
S: 115	Spur SW	Hardware problem. If fault persists contact your local Siemens representative.		
S: 116	Spur HW	Hardware problem. If fault persists contact your local Siemens representative.		
S: 117	SV High	Verify TB not in simulation mode. If fault persists contact your local Siemens representative.		
S: 118	SV Low	Verify TB not in simulation mode. If fault persists contact your local Siemens representative.		

Operation Troubleshooting

Operating symptoms, probable causes, and resolutions (continued on next page).

Operation Troubleshooting				
Symptom	Cause	Action		
Display shows S: 0 LOE	Level or target is out of range	check specifications check Low Calibration Point (2.3.7.1.) increase Confidence (2.5.9.1.)		
Display shows S: 0 LOE	Material build-up on antenna	clean the antenna re-locate SITRANS LR250		
Display shows S: 0 LOE	Location or aiming: • poor installation • flange not level • Auto False Echo Suppression may be incorrectly applied	check to ensure nozzle is vertical ensure end of antenna protrudes from end of nozzle review Auto False Echo Suppression (2.5.10.1.) on page 110 ensure Auto Suppression Range is set correctly		
Display shows S: 0 LOE	Antenna malfunction: temperature too high physical damage excessive foam multiple echoes	check temperature in Maximum Value (3.3.2) use foam deflector or stillpipe relocate use a defoamer set Algorithm (2.5.7.1.) to tF (trueFirst echo)		
Reading does not change, but the level does	SITRANS LR250 process- ing wrong echo, i.e. vessel wall, or structural member	re-locate SITRANS LR250 check nozzle for internal burrs or welds rotate instrument 90° use Auto False Echo Suppression (2.5.10.1.) and Auto False Echo Suppression Range (2.5.10.2.)		
Measurement is consistently off by a constant amount	setting for Low Calibration Point (2.3.7.1.) not correct setting for Sensor Offset (2.3.7.3.) not correct	check distance from sensor reference point to Low Calibration Point (2.3.7.1.) check Sensor Offset (2.3.7.3.)		
Screen blank	Power error	check nameplate rating against voltage supply check power wiring or source		

	Operation Troubleshoo	ting (contd)
Symptom	Cause	Action
Reading erratic	Echo confidence weak	refer to Confidence (2.5.9.1.) use Auto False Echo Suppression (2.5.10.1.) and Auto False Echo Suppression Range (2.5.10.2.) use foam deflector or stillpipe
	Liquid surface vortexed	decrease Fill Rate per Minute (2.3.8.2) relocate instrument to side pipe increase confidence threshold in Echo Threshold (2.5.7.3.)
	Material filling	re-locate SITRANS LR250
Reading response slow	Fill Rate per Minute (2.3.8.2.) setting is incorrect	increase measurement response if possible
Reads correctly but occasionally reads high when vessel is not full	detecting close range echo build up near top of vessel or nozzle nozzle problem	clean the antenna use Auto False Echo Suppression (2.5.10.1.) and Auto False Echo Suppression Range (2.5.10.2.)
Level reading lower than material level	material is within Near Range zone multiple echoes processed	decrease Near Range (2.5.1.): minimum value depends on antenna type raise SITRANS LR250 ensure Algorithm (2.5.7.1.) is set to tF (trueFirst echo)
	vessel near empty and low dK material	ensure Material (23.5.) selection is LIQUID LOW DK set Position Detect (2.5.7.2.) to Hybrid check the setting for CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.): see the table below Propagation Factor (2.5.3.) for recommended settings

Appendix C: Maintenance

SITRANS LR250 requires no maintenance or cleaning under normal operating conditions.

Under severe operating conditions, the antenna may require periodic cleaning. If cleaning becomes necessary:

- Note the antenna material and the process medium, and select a cleaning solution that will not react adversely with either.
- Remove the instrument from service and wipe the antenna clean using a cloth and suitable cleaning solution.

Unit Repair and Excluded Liability

All changes and repairs must be done by qualified personnel, and applicable safety regulations must be followed. Please note the following:

- The user is responsible for all changes and repairs made to the device.
- All new components must be provided by Siemens Milltronics Process Instruments Inc.
- Restrict repair to faulty components only.
- Do not re-use faulty components.

Replacing the antenna

- If the antenna requires replacement due to damage, it may be replaced without need for re-calibration.
- Changing to a different antenna type may be performed by a Siemens authorized repair center.

Appendix D: Technical Reference

Note: Where the number follows the parameter name [for example, **Algorithm (25.7.1.)**] this is the parameter access number via the handheld programmer. See *Parameter Reference (LUI)* on page 96 for a complete list of parameters.

Principles of Operation

SITRANS LR250 is a 2-wire 25 GHz pulse radar level transmitter for continuous monitoring of liquids and slurries¹⁾. Radar level measurement uses the time of flight principle to determine distance to a material surface. The device transmits a signal and waits for the return echo. The transit time is directly proportional to the distance from the material.

Pulse radar uses polarized electromagnetic waves. Microwave pulses are emitted from the antenna at a fixed repetition rate, and reflect off the interface between two materials with different dielectric constants (the atmosphere and the material being monitored).

Electromagnetic wave propagation is virtually unaffected by temperature or pressure changes, or by changes in the vapor levels inside a vessel. Electromagnetic waves are not attenuated by dust.

SITRANS LR250 consists of an enclosed electronic circuit coupled to an antenna and process connection. The electronic circuit generates a radar signal (25 GHz) that is directed to the horn.

The signal is emitted from the horn, and the reflected echoes are digitally converted to an echo profile. The profile is analyzed to determine the distance from the material surface to the sensor reference point². This distance is used as a basis for the display of material level.

Echo Processing

Process Intelligence

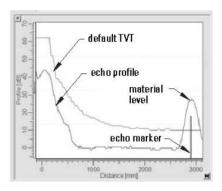
The signal processing technology embedded in Siemens radar level devices is known as **Process Intelligence**.

Process intelligence provides high measurement reliability regardless of the dynamically changing conditions within the vessel being monitored. The embedded Process Intelligence dynamically adjusts to the constantly changing material surfaces within these vessels.

The microwave output level is significantly less than that emitted from cellular phones.

²⁾ See Threaded Horn Antenna with extension on page 12 and Flanged Horn on page 13.

Process Intelligence is able to differentiate between the true microwave reflections from the surface of the material and unwanted reflections being returned from obstructions such as seam welds or supports within a vessel. The result is repeatable, fast and reliable measurement. This technology was developed as result of field data gained over some twenty years from more than 1,000,000 installations in many industries around the world.


Higher order mathematical techniques and algorithms are used to provide intelligent processing of microwave reflection profiles. This "knowledge based" technique produces superior performance and reliability.

Echo Selection Time Varying Threshold (TVT)

A Time Varying Threshold (TVT) hovers above the echo profile to screen out unwanted reflections (false echoes).

In most cases the material echo is the only one which rises above the default TVT.

In a vessel with obstructions, a false echo may occur. See *Auto False Echo Suppression (2.5.10.1.)* on page 148 for more details.

The device characterizes all echoes that rise above the TVT as potential good echoes. Each peak is assigned a rating based on its strength, area, height above the TVT, and reliability, amongst other characteristics.

Algorithm (2.5.7.1.)

The true echo is selected based on the setting for the Echo selection algorithm. Options are True First echo, First echo, Largest echo, or **B**est of Largest and First.

Position Detect (2.5.7.2.)

The echo position detection algorithm determines which point on the echo will be used to calculate the precise time of flight, and calculates the range using the calibrated propagation velocity [see **Propagation Factor (2.5.3.)** for values]. There are three options:

- Center
- CLEF (Constrained Leading Edge Fit)
- Hybrid (Center and CLEF)

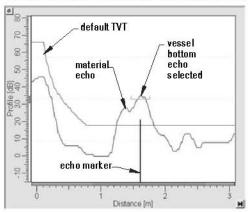
Center

Uses center of the echo.

Hybrid

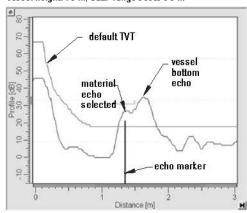
Uses the Center algorithm for the top part of the vessel, and the CLEF algorithm for the part nearest the vessel bottom, according to the setting for **CLEF range**.

CLEF (Constrained Leading Edge Fit)


- Uses the leading edge of the echo.
- Is used mainly to process the echo from materials with a low dK value.

In an almost empty vessel, a low dK material may reflect an echo weaker than the echo from the vessel bottom. The echo profile shows these echoes merging. The device may then report a material level equal to or lower than empty.

The CLEF algorithm enables the device to report the level correctly.


Example: CLEF off: Position set to Hybrid

Vessel height: 1.5 m; CLEF range set to 0 (**Center** algorithm gives the same result.)

Example: CLEF enabled

Vessel height: 15 m; CLEF range set to 05 m

CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.)

Determines the level below which the CLEF algorithm will be used. Above this level the Center algorithm is used.

Echo Threshold (2.5.7.3.)

Confidence (2.5.9.1.) describes the quality of an echo. Higher values represent higher quality. **Echo Threshold** defines the minimum confidence value required for an echo to be accepted as valid and evaluated.

Echo Lock (2.5.8.1.)

If the echo selected by **Algorithm** is within the Echo Lock window, the window is centered about the echo, which is used to derive the measurement. In radar applications, two measurement verification options are used:

Lock Off

SITRANS LR 250 responds immediately to a new selected echo (within the restrictions set by the Maximum Fill / Empty Rate), but measurement reliability is affected.

Material Agitator

A new measurement outside the Echo Lock Window must meet the sampling criteria before the window will move to include it.

The other available options, **Maximum Verification** and **Total Lock** are not recommended for radar

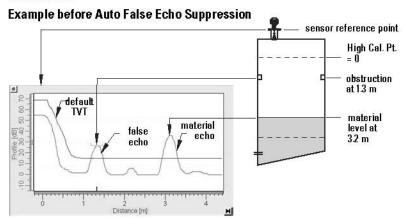
Auto False Echo Suppression (2.5.10.1.)

Notes:

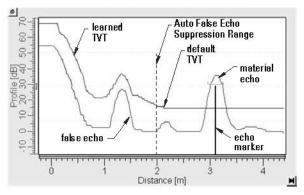
- For detailed instructions on using this feature via AMS see TVT (time varying threshold) on page 56.
- For detailed instructions on using this feature via the handheld programmer see
 Auto False Echo Suppression (2.5.10.1.) on page 110.

Auto False Echo Suppression is designed to learn a specific environment (for example, a particular vessel with known obstructions), and in conjunction with Auto False Echo Suppression Range to remove false echoes appearing in front of the material echo.

The material level should be below all known obstructions at the moment when Auto False Echo Suppression learns the echo profile. Ideally the vessel should be empty or almost empty, and if an agitator is present, it should be running.


The device learns the echo profile over the whole measurement range and the TVT is shaped around all echoes present at that moment.

Auto False Echo Suppression Range (2.5.10.2.)


Auto False Echo Suppression Range specifies the range within which the learned TVT is applied. Default TVT is applied over the remainder of the range.

The learned TVT screens out the false echoes caused by obstructions. The default TVT allows the material echo to rise above it.

Auto False Echo Suppression Range must be set to a distance shorter than the distance to the material level when the environment was learned, to avoid the material echo being screened out.

Example after Auto False Echo Suppression

Auto False Echo Suppression Range set to 2 m

Measurement Range

Near Range (2.5.1.)

Near Range programs SITRANS LR250 to ignore the zone in front of the antenna. The default blanking distance is 50 mm (1.97) from end of horn antenna.

Near Range allows you to increase the blanking value from its factory default. But Auto False Echo Suppression (2.5.10.1.) is generally recommended in preference to extending the blanking distance from factory values.

Far Range (2.5.2.)

Far Range can be used in applications where the base of the vessel is conical or parabolic. A reliable echo may be available below the vessel empty distance, due to an indirect reflection path.

Increasing Far Range to 30% or 40% can provide stable empty vessel readings.

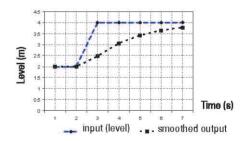
Measurement Response

Note: Units are defined in Unit (2.3.1.) and are in meters by default.

Response Rate (2.3.8.1.) limits the maximum rate at which the display and output respond to changes in the measurement. There are three preset options: slow, medium, and fast. Once the real process fill/empty rate (m/s by default) is established, a response rate can be selected that is slightly higher than the application rate.

Note: Changing Response Rate resets Fill Rate per Minute (2.3.8.2.), Empty Rate per Minute (2.3.8.3.), and Shots (2.5.6.).

Response Rate (2.3.8.1.)		Fill Rate per Minute (2.3.8.2.)/ Empty Rate per Minute (2.3.8.3.)	Shots (2.5.6.)
*	Slow	0.1 m/min (0.32 ft/min)	25
	Medium	1.0 m/min (3.28 ft/min)	10
	Fast	10.0 m/min (32.8 ft/min)	5


Damping

Filter Time Constant (26.7.1.) smooths out the response to a sudden change in level. This is an exponential filter and the engineering unit is always in seconds.

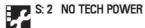
In 5 time constants the output rises exponentially: from 63.2% of the change in the first time constant, to almost 100% of the change by the end of the 5th time constant.

Damping example

time constant = 2 seconds input (level) change = 2 m

Loss of Echo (LOE)

A loss of echo (LOE) occurs when the calculated measurement is judged to be unreliable because the echo confidence value has dropped below the echo confidence threshold.


Confidence (2.5.9.1.) describes the quality of an echo. Higher values represent higher quality.

Echo Threshold (2.5.7.3.) defines the minimum confidence value required for an echo to be accepted as valid and evaluated.

If the LOE condition persists beyond the time limit set in **Loss of Echo (LOE) Timer (2.3.6.)** the LCD displays the Service Required icon, and the text region displays the fault code **S: 0** and the text **LOE**.

If two faults are present at the same time, the fault code, error text, and error icon for each fault are displayed alternately. For example, Loss of Echo and faulty power supply:

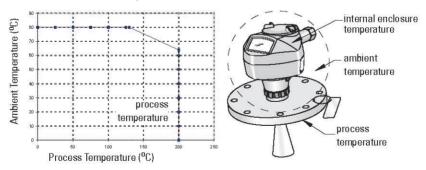
Upon receiving a reliable echo, the loss of echo condition is aborted, the Service Required icon and error message are cleared, and the reading returns to the current level

LOE Timer

Loss of Echo (LOE) Timer (2.3.6.) determines the length of time a Loss of Echo (LOE) condition will persist before the function block will show a status of BAD or UNCERTAIN. The default is 100 seconds

Maximum Process Temperature Chart

Flange Adapter versions of SITRANS LR250



WARNING: Internal temperature must not exceed +80 °C (+176 °F).

Notes:

- · The chart below is for guidance only:
- The chart does not represent every possible process connection arrangement. For example, it will NOT apply if you are mounting SITRANS LR250 directly on a metallic vessel surface.
- The chart does not take into consideration heating from direct sunshine exposure.

Maximum Process Temperatures versus allowable ambient

Where the chart does not apply, please use your own judgement regarding the use of SITRANS LR250.

See Minimum Value (3.3.1.) on page 118 and Maximum Value (3.3.2.) on page 118 to monitor the Internal Temperature.

If the internal temperature exceeds the maximum allowable limit, a sun shield or a longer nozzle may be required.

Process Pressure/Temperature derating curves

WARNINGS:

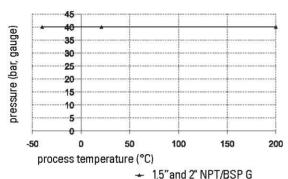
- Never attempt to loosen, remove or disassemble process connection or instrument housing while vessel contents are under pressure.
- Materials of construction are chosen based on their chemical compatibility (or inertness) for general purposes. For exposure to specific environments, check with chemical compatibility charts before installing.
- The user is responsible for the selection of bolting and gasket materials which will fall within the limits of the flange and its intended use and which are suitable for the service conditions.
- Improper installation may result in loss of process pressure and/or release of process fluids and/or gases.

Notes:

- The Process Device Tag shall remain with the process pressure boundary assembly.¹⁾ In the event the instrument package is replaced, the Process Device Tag shall be transferred to the replacement unit.
- SITRANS LR250 units are hydrostatically tested, meeting or exceeding the requirements of the ASME Boiler and Pressure Vessel Code and the European Pressure Equipment Directive.
- The serial numbers stamped in each process connection body, (flange, threaded, or sanitary), provide a unique identification number indicating date of manufacture.
 Example: MMDDYY – XXX (where MM = month, DD = day, YY = year, and XXX = sequential unit produced)
- Further markings (space permitting) indicate flange configuration, size, pressure class, material, and material heat code.

Pressure Equipment Directive, PED, 97/23/EC

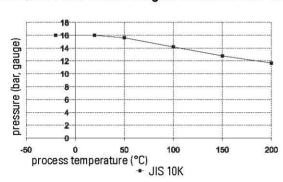
Siemens Level Transmitters with flanged, threaded, or sanitary clamp type process mounts have no pressure-bearing housing of their own, and therefore do not come under the Pressure Equipment Directive as pressure or safety accessories (see EU Commission Guideline 1*R* and 1/20).¹⁾


The process pressure boundary assembly comprises the components that act as a barrier against pressure loss from the process vessel: that is, the combination of process connection body and emitter, but normally excluding the electrical enclosure.

Horn Antenna or Wave Guide

WARNING: Never attempt to loosen, remove or disassemble process connection or instrument housing while vessel contents are under pressure.

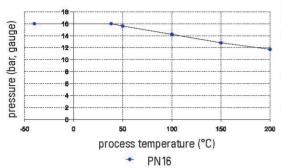
Note: Customer to provide adequate bolting and gasketing to retain vessel pressure and provide sufficient sealing.


1.5" and 2" Threaded Versions

Process Connection Series:

- 51209 or 51251 series fittings.
- Ensure the process device tag identifies one of these series.
- 25517 or 25555 will be stamped on the threaded fitting.

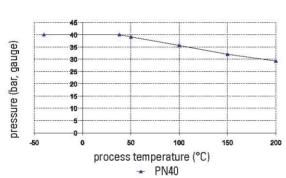
50A, 80A and 100A Flanged Versions: JIS 10K


Process Connection Series:

- 51242 or 51252 series flange.
- Ensure the process device tag identifies one of these series.
- 25546 or 25547 will be stamped on a flat faced flange.
- 25580 or 25581 will be stamped on a raised face flange.

WARNING: Never attempt to loosen, remove or disassemble process connection or instrument housing while vessel contents are under pressure.

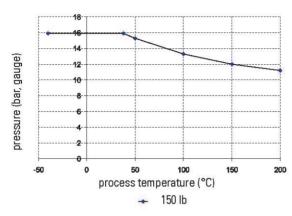
Note: Customer to provide adequate bolting and gasketing to retain vessel pressure and provide sufficient sealing.


DN50, DN80, DN100, and DN150 Flanged Versions: PN16

Process Connection Series:

- 51242 or 51252 series flange.
- Ensure the process device tag identifies one of these series.
- 25547 will be stamped on a flat faced flange.
- 25581, 25656 or 25657 will be stamped on a raised face flange.

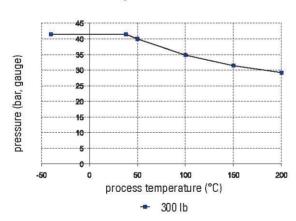
DN50, DN80, DN100, and DN150 Flanged Versions: PN40


Process Connection Series:

- 51242 or 51252 series flange.
- Ensure the process device tag identifies one of these series
- 25547 will be stamped on a flat faced flange.
- 25581, 25656 or 25657 will be stamped on a raised face flange.

WARNING: Never attempt to loosen, remove or disassemble process connection or instrument housing while vessel contents are under pressure.

Note: Customer to provide adequate bolting and gasketing to retain vessel pressure and provide sufficient sealing.


2", 3", and 4" Flanged Versions: 150 lb

Process Connection Series:

- 51242 or 51252 series flange.
- Ensure the process device tag identifies one of these series.
- 25546 will be stamped on a flat faced flange.
- 25580 will be stamped on a raised face flange.

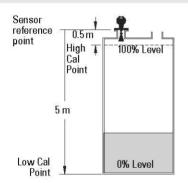
2", 3", and 4" Flanged Versions: 300 lb

Process Connection Series:

- 51242 or 51252 series flange.
 - Ensure the process device tag identifies one of these series.
- 25546 will be stamped on a flat faced flange.
- 25580 will be stamped on a raised face flange.

Appendix E: Application Examples

Note: In the applications illustrated below, values are for example purposes only.


You can use these examples as setup references. Enter the values in the parameter tables to select the corresponding functions.

Configure the basic settings using the Ω uick Start wizard parameters. (These parameters are inter-related, and changes take effect only after you select **FINISH** in final step: Wizard Complete.)

In each example, after performing a Quick Start, navigate to the other required parameters (either via the handheld programmer, or via AMS Device Manager) and enter the appropriate values

Liquid resin in storage vessel, level measurement

Note: Minimum distance from flange face to target is limited by Near Range (25.1).

To obtain level measurement proportional to resin levels:

Low Calibration Pt. = 5 m (16.4 ft) from sensor reference point

High Calibration Pt.= 0.5 m (1.64 ft) from sensor reference point.

Max.fill/empty rate = 0.2 m/min. (0.65 ft/min) In the event of a loss of echo:

SITRANS LR250 is to report a status of BAD or UNCERTAIN after 120 seconds (2 minutes).

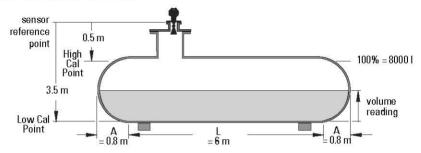
Parameter type	Parameter Name	Options/ Values	Function	
	Introduction NEXT		Continue with Wizard.	
	Language	NEXT	Continue with current language.	
	Material	LIQUID		
Quick Start	Response Rate	MED	Medium =1 m/minute	
Wizard	Units	М	meters	
parameters	Low Calibration Point	5	5 m (16.4 ft)	
	High Calibration Point	0.5	0.5 m (1.64 ft)	
	Wizard Complete	FINISH	Transfers Quick Start settings to device.	
Independent parameters	Loss of Echo (LOE) Timer (2.3.6.)	120	120 seconds	

Press Mode 🔁 to return to Measurement mode.

Horizontal vessel with volume measurement

Note: The minimum distance from the flange face to the target is limited by **Near Range** (2.5.1.).

To obtain level measurement proportional to vessel volume in a chemical vessel:


Low Calibration Point = 3.5 m (11.48 ft) from sensor reference point

High Calibration Point = 0.5 m (1.64 ft) from sensor reference point.

Max. fill/empty rate = 0.2 m/min. (0.65 ft/min.)

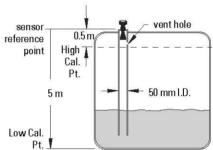
Select vessel shape, Parabolic Ends, and enter values for A and L, to obtain a volume reading instead of level

In the event of a loss of echo: SITRANS LR250 is to report a status of BAD or UNCERTAIN after 120 seconds (2 minutes).

Parameter type	Parameter Name	Options/Values	Function
	Introduction	NEXT	Continue with Wizard.
	Language	NEXT	Continue with current language.
	Material	LIQUID	
Quick Start	Response Rate	MED	Medium =1 m/minute
Wizard	Units	M	meters
parameters	Low Calibration Point	3.5	3.5 m (11.48 ft)
	High Calibration Point	0.5	0.5 m (1.64 ft)
	Wizard Complete	FINISH	Transfers Quick Start settings to device.
,	Vessel Shape (2.4.1.1.)	PARABOLIC ENDS	Defines vessel shape.
Indones	PV (volume/level) Units (2.3.3.)	L	litres
Indepen-	Level Unit (2.3.2.)	М	meters
dent	Maximum Volume (2.4.1.2.)	8000	8000 liters
parameters	Dimension A (2.4.1.3.)	0.8	0.8 m (2.62 ft)
	Dimension L (2.4.1.4.)	6	6 m (19.68 ft)
	Loss of Echo (LOE) Timer (2.3.6.)	120	120 seconds

Return to **Measurement**: press **Mode (Section 2)** to start normal operation.

Application with Stillpipe


A stillpipe is recommended for products with a dK of less than 3, or if extremely turbulent or vortex conditions exist. This mounting arrangement can also be used to provide optimum signal conditions on foaming materials.

Notes:

- Near Range (2.5.1.) will be set at the factory. Check the Process Device Tag for specific values
- Suitable pipe diameters are 40 mm (1.5") to 100 mm (4").
- The pipe diameter must be matched with the horn size. Use the largest horn size that will
 fit the stillpipe/bypass pipe (see Flat Faced Flange on page 16).
- See Mounting on a Stillpipe or Bypass Pipe on page 20 for installation guidelines.

This application is to obtain a level measurement proportional to the oil level in a fuel storage vessel.

- Low Calibration Pt. is 5 m (16.4 ft) from the sensor reference point.
- High Calibration Pt. is 0.5 m (1.64 ft) from the sensor reference point.
- The stillpipe inside diameter is 50 mm (1.96").
- The maximum rate of filling or emptying is about 0.1 m (4")/min.

Parameter type	Parameter Name	Options/Values	Function
119	Introduction	NEXT	Continue with Wizard.
	Language	NEXT	Continue with current language.
	Material	LIQUID LOW DK	
Quick Start	Response Rate	MED	Medium =1 m/minute
Wizard	Units	М	meters
parameters	Low Calibration Point	5	5 m (16.4 ft)
	High Calibration Point	0.5	0.5 m (1.64 ft)
	Wizard Complete	FINISH	Transfers Quick Start settings to device.
[]	Propagation Factor (2.5.3.) ^{a)}	0.990	P.F. for a 50 mm (1.96") I.D. stillpipe
Indepen- dent param- eters	Position Detect (2.5.7.2.)	HYBRID	
	CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.) ^{a)}	5.5 m	5.5 m (18.04 ft)

The recommended values for the propagation factor and for CLEF range are dependent on the stillpipe diameter. Refer to the next table for values.

Propagation Factor/Stillpipe Diameter

Nominal Pipe Size a)	40 mm (1.5")	50 mm (2")	80 mm (3")	100 mm (4")
Propagation Factor	0.9828	0.990	0.991	0.9965
CLEF (Constrained Leading Edge Fit) Range (2.5.7.4.)	Low Cal Pt. minus 700 mm	Low Cal Pt. minus 700 mm	Low Cal Pt. minus 1000 mm	Low Cal Pt. minus 1000 mm
settings	(2.29 ft)	(2.29 ft)	(3.28 ft)	(3.28 ft)

a) Since pipe dimensions may vary slightly, the propagation factor may also vary.

Appendix F: Communications via Foundation Fieldbus (FF)

SITRANS LR250 (Foundation Fieldbus) is an FF (H1) device of Class 31PS, and 32L. It supports publish and subscribe functionality as well as Backup LAS functionality. The full range of SITRANS LR250 functions is available only over an FF network.

Foundation Fieldbus (FF) is an open industrial protocol. Full details about FF can be obtained from Fieldbus Foundation at www.fieldbus.org.

For details on the use of Foundation Fieldbus protocol with Siemens FF level instruments, see manual Foundation Fieldbus for Level Instruments (7ML19985MP01). The manual is available on the CD of Siemens manuals, included in the box with your Siemens level instrument, or for other Siemens level measurement manuals, go to:

www.siemens.com/level. and look under Level Measurement.

Field Communicator 375 (FC375)

SITRANS LR250 (FF) supports Field Communicator 375 (FC375). The FC375 menu structure is very similar to the menu structure for AMS Device Manager (see *AMS Menu Structure* on page 82).

Appendix G: Firmware Revision History

Firmware Rev.	DD Rev.	Date	Changes
1.01.00-00	1.01.00-00	February 25, 2010	Initial release.

Index

Note: Parameter names are capitalized.

Α	via AMS 41
abbreviations	dimensions
list 4	flanged horn 14
access control	flat faced flange 16
see security 129	raised face flange 15
activating SITRANS LR250 30	threaded horn 11
AMS Device Manager 40	threaded horn with extension 12
Auto False Echo Suppression	E
explanation 148	Echo Processing
setup 110	Process Intelligence 145
В	Echo Profile
beam angle	view via AMS 58
values 11, 14	view via LUI 38
blanking (see Near Range) 149	echo selection
bypass pipe	Algorithm 146
see stillpipe 20	CLEF (Constrained Leading Edge Fit)
C	147
Calibration Schedule 125	Position Detect 146
channel	Time Varying Threshold (TVT) 146
transducer block outputs 114	EDD
cleaning	updating 42
instructions 144	edit mode
CLEF (Constrained Leading Edge Fit)	handheld programmer 34
explanation 147	Electronic Device Description (EDD)
configuration	updating 42
new device via AMS 44	Empty Rate per Minute
new device via LUI 36	setup 101
stillpipe via AMS 158	enable/disable local operation 72
D	enable/disable remote operation 129
damping	enclosure
explanation 150	opening 22
device address 38	Fig. 19 St. 19 Tolerand
device nameplate	factory defaults 119
FM/CSA Class 1 Div. 2 27, 28	reset via AMS 44
Intrinsically Safe (ATEX/IECEx/ANZEX)	Far Range
26	explanation 149
Intrinsically Safe (FM/CSA) 26	fault codes 138
Device Reset 119	Fill Rate per Minute
factory defaults 119	setup 101
standard defaults 119	Filter Time Constant
device status	explanation 150
icons 136	flat faced flange 16
diagnostics	flat faced flange markings 17
maintenance settings 117	function keys
≅	edit mode 35

measurement mode 32	housing construction 20		
navigation mode 34	nozzle design 19, 152		
H	nozzle location 19, 152		
handheld programmer	on vessel with obstructions 20		
edit mode 34	sunshield recommended 20		
navigation 34	N		
programming 33	nameplate		
hazardous area installations	Intrinsically Safe (ATEX/IECEx/ANZEX)		
instructions 29	26		
hysteresis	Intrinsically Safe (FM/CSA) 26		
setup 116	Near Range		
I	explanation 149		
icons	0		
device status 136	operating principles 145		
identifications and abbreviations	output limits		
list 4	setup 115		
installation	output scale		
requirements 18	setup 115		
warnings and notes 18	Р		
internal temperature	password protection		
monitoring 151	via AMS 80		
L	peak values		
Language 130	Electronics Temperature 118		
LCD display	sensor Peak Values 118		
echo profile viewing 38	polarization reference point 20		
PROGRAM mode 31	power source		
lid-lock set screw 22	requirements 22		
Limit Hysteresis	Process Intelligence 145		
setup 116	process temperature		
local operation	maximum 151		
enable/disable 72	Process Variables		
LOE Timer	view via AMS 79		
explanation 151	programmer		
Loss of Echo (LOE)	handheld 32		
explanation 150	programming LR250		
LUI (local user interface) 30	via handheld programmer 33		
M	0		
maintenance	Quick Start Wizard		
calibration schedule 125	via AMS 45		
cleaning 144	via LUI 36		
repairs 144	R		
replacing antenna 144	raised face flange markings 15		
service schedule 123	reading erratic 143		
maintenance settings	reading response slow 143		
see diagnostics 117	repair		
Master Reset	cautions 144		
factory defaults via AMS 44	excluded liability 144		
factory defaults via LUI 119	resets		
mounting	Device Reset 44, 119		
handheld programmer access 20	Resnance Rate		

```
explanation 150
     setup 100
2
safety notes 1
Scan Device
     synchronize parameters via AMS 44
security
     local access control via AMS 72
     password protection via AMS 80
     remote access control 129
sensor reference point
     flanged horn 13
     threaded horn 12
Service Schedule 123
settinas
     adjust parameters via LUI 33, 34
Simulation
     input 50
SITRANS LR250
     operating principles 145
     overview 6
status icons 136
stillpipe
     application 158
     mounting requirements 20
Support
     contact information 3
synchronize parameters
     scan device via AMS 44
Т
Technical Support 3
temperature de-Rating
     curves 152
threaded connection markings 11
transducer block outputs
     channel 114
troubleshooting
     operation 142
TVT (time varying threshold)
     explanation 146
TVT Shaper
     manual adjustment via AMS 57
vessel shape
     selection 102
W
Wear
     Powered Hours, Power-on Resets 127
wiring
     basic 22
```

Glossary

- accuracy. degree of conformity of a measure to a standard or a true value.
- agitator; mechanical apparatus for mixing or aerating. A device for creating turbulence.
- **algorithm:** a prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- ambient temperature: the temperature of the surrounding air that comes in contact with the enclosure of the device
- antenna: an aerial which sends out and receives a signal in a specific direction. There are four basic types of antenna in radar level measurement, horn, parabolic, rod, and waveguide.
- Auto False-Echo Suppression: a technique used to adjust the level of a TVT curve to avoid the reading of false echoes. (See TVT.)
- Auto False-Echo Suppression Range: defines the endpoint of the Learned TVT distance. (See TVT.) This is used in conjunction with auto false echo suppression.
- beam angle: the angle diametrically subtended by the one-half power limits (-3 dB) of the microwave beam
- **blanking:** a blind zone extending away from the reference point plus any additional shield length. The instrument is programmed to ignore this zone.
- capacitance: the property of a system of conductors and dielectrics that permits the storage of electricity when potential differences exist between the conductors. Its value is expressed as the ratio of a quantity of electricity to a potential difference, and the unit is a Farad.

confidence: see Echo Confidence

- **damping:** term applied to the performance of an instrument to denote the manner in which the measurement settles to its steady indication after a change in the value of the level.
- dB (decibel): a unit used to measure the amplitude of signals.
- **derating**: to decrease a rating suitable for normal conditions according to guidelines specified for different conditions.
- dielectric: a nonconductor of direct electric current 1)
- **dielectric constant (DK):** the ability of a dielectric to store electrical potential energy under the influence of an electric field. Also known as Relative Permitivity. An increase in the dielectric constant is directly proportional to an increase in signal amplitude. The value is usually given relative to a vacuum /dry air: the dielectric constant of air is 1¹⁾.

Many conductive liquids/electrolytes exhibit dielectric properties; the relative dielectric constant of water is 80.

- **echo:** a signal that has been reflected with sufficient magnitude and delay to be perceived in some manner as a signal distinct from that directly transmitted. Echoes are frequently measured in decibels relative to the directly transmitted signal.
- Echo Confidence: describes the quality of an echo. Higher values represent higher quality.

 Echo threshold defines the minimum value required for an echo to be accepted as valid and evaluated.
- Echo Lock Window: a window centered on an echo in order to locate and display the echo's position and true reading. Echoes outside the window are not immediately processed.

Echo Marker: a marker that points to the processed echo.

Echo Processing: the process by which the radar unit determines echoes.

Echo Strength: describes the strength of the selected echo in dB above 1 μ V rms.

Echo Profile: a graphical display of a processed echo.

false echo: any echo which is not the echo from the desired target. Generally, false echoes are created by vessel obstructions.

frequency: the number of periods occurring per unit time. Frequency may be stated in cycles per second.

hertz (Hz): unit of frequency, one cycle per second. 1 Gigahertz (GHz) is equal to 109 Hz.

horn antenna: a conical, horn-shaped antenna which focuses microwave signals. The larger the horn diameter, the more focused the radar beam.

inductance: the property of an electric circuit by virtue of which a varying current induces an electromotive force in that circuit or in a neighboring circuit. The unit is a Henry.

multiple echoes: secondary echoes that appear as double, triple, or quadruple echoes in the distance from the target echo.

Near Blanking: see Blanking

nozzle: a length of pipe mounted onto a vessel that supports the flange.

parameters: in programming, variables that are given constant values for specific purposes or processes.

polarization: the property of a radiated electromagnetic wave describing the time-varying direction and amplitude of the electric field vector.

propagation factor (pf): where the maximum velocity is 1.0, pf is a value that represents a reduction in propagation velocity as a result of the wave travelling through a pipe or medium.

pulse radar: a radar type that directly measures distance using short microwave pulses. Distance is determined by the return transit time. radar: radar is an acronym for RAdio Detection And Ranging. A device that radiates electromagnetic waves and utilizes the reflection of such waves from distant objects to determine their existence or position.

range: distance between a transmitter and a target.

range extension: the distance below the zero percent or empty point in a vessel.

repeatability: the closeness of agreement among repeated measurements of the same variable under the same conditions.

shot one transmit pulse or measurement.

stillpipe: a pipe that is mounted inside a vessel parallel to the vessel wall, and is open to the vessel at the bottom.

stilling-well: see stillpipe.

TVT (time varying threshold): a time-varying curve that determines the threshold level above which echoes are determined to be valid.

7 ML19985KL01

.CD Menu Structure

In Navigation mode ARROW keys navigate the menu in the direction of the arrow.

•See Parameter Reference on page 47 for detailed information and instructions.

LEVEL METER

- 1. QUICK START

INTRODUCTION **QUICK START WIZ** LANGUAGE

RESPONSE RATE MATERIAL

LOW CALIB. PT. HIGH CALIB. PT. UNITS

WIZARD COMPLETE

2. SETUP

IDENTIFICATION

DESCRIPTOR MESSAGE 21.2 21.3

DEVICE

2.2

221 HARDWARE REV 222 FIRMWARE REV 223 LOADER REV

23

SENSOR

LEVEL UNIT 23.1 UNIT

PV UNITS

TEMP UNITS MATERIAL 23.2 23.3 23.4 23.5 23.5 23.6

LOE TIMER

CALIBRATION

JOW LEVEL POINT LOW CALIB. PT. HIGH CALIB. PT. SENSOR OFFSET 23.72 23.73 23.74 23.75 23.76 23.76

EVEL OFFSET ANTENNA

HIGH LEVEL POINT

23.8.1 2.3.8 RATE

2.4 LINEARIZATION

FILL RATE/MIN EMPTY RATE/MIN RESPONSE RATE

23.8.2

24.1 VOLUME

VESSEL SHAPE MAX VOLUME DIMENS. A DIMENS. L XY INDEX 24.1.2 2413 2414 2415 2415 2416 24.1.1

X VALUE Y VALUE

2.5.9.2 ECHO STRENGTH CONFIDENCE 2.5.9.1 2.5.9 ECHO QUALITY

2.5.8.3 DOWN SAMP.

UP SAMP

2.8.2

2.5.8.1 ECHO LOCK

2.5.8 SAMPLING

ECHO THRESHOLD

2.5.7.2 POS. DETECT ALGORITHIN

2.5.7.1 2.5.7.3

25.3 PROPAG. FACTOR 25.4 MIN SENSOR VAL 25.5 MAX SENSOR VAL 25.6 SHOTS 25.7 ECHO SELECT

25.1 NEAR RANGE 25.2 FAR RANGE

2.5 SIGNAL PROC.

SETUP (cont'd)

2

2.5.7.4 CLEF RANGE

2.5.10.1 AUTO ECHO SUPP 2.5.10.2 AUTO SUPP RANGE 2.5.10.3 HOVER LEVEL 2.510 TVT SETUP

2510.4 SHAPER MODE 2.5.11 TVT SHAPER

2.5.11.2 BRKPT. 10-18 25113 BRKPT 19-27 2511.4 BRKPT 28-36 2.5.11.1 BRKPT. 1-9

2.6 AIFB 1

2.6.1 STATIC REV. NO.

2.5.11.5 BRKPT. 37-40

2.6.2 MODE 2.6.3 CHANNEL 2.6.4 INPUT SCALING

26.4.1 LOWER VALUE 26.4.2 UPPER VALUE

2.6.4.4 DECIMAL POINT 2.6.4.3 UNIT

2.6.5.1 LOWER VALUE 2.6.5 OUTPUT SCALING

2.6.5.4 DECIMAL POINT 2.6.5.2 UPPER VALUE 2.6.5.3 UNIT 2.6.6 ALARMS & WARNI.

2.6.6.4 LO LIMIT ALARM 2.6.6.1 HI LIMIT ALARM 2.6.6.3 LO LIMIT WARN 2.6.6.2 HI LIMIT WARN

2.6.7.1 FILTER TIME CONS. 2.6.6.5 LIMIT HYSTERESI 2.6.7 DISPLAY

Page 170

4.3.2

4.3

43.3

4.2.1

— 4. SERVICE

3.4

4

```
6.22 PIN TO UNLOCK
6.23 LOCAL OPERATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               6.1.1 REMOTE LOCKOUT
                                                                                                                                   14.3 TIME NEXT SERVI.
                                                                                                                                                   .4.4 REMINDER ACTIV.
                                                                                                                                                                                                                                                                                           4.5.3 TIME NEXT CALIB
4.5.4 REMINDER ACTIV.
                                                                                                                                                                                 .4.6 REMIND. 2 (DEM.)
                                                                                                                                                                                                                                                                                                                                        REMIND 2 (DEM.)
                                                                                                                                                                                                                                                                              .5.2 TIME LAST CALIB
                                                                                                                                                                                                                                                                                                                         1.5.5 REMIND. 1 (REQ.)
                                                                                                                                                                   .4.5 REMIND. 1 (REQ.)
                                                                                                                                                                                                                                                              4.5.1 CALIB. INTERVAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6.2.1 WRITE PROTECT
                                                                                                                       .4.2 TIME LAST SERV
                                                                                                      4.4.1 SERV. INTERVAL
                                                         13.8 ACK STATUS
                                            4.3.7 MAINT STAT
                                                                                                                                                                                                 1.4.7 MAINT STAT
1.4.8 ACK STATUS
                                                                                                                                                                                                                                                                                                                                                                       4.5.8 ACK STATUS
                                                                                                                                                                                                                                                                                                                                                         1.5.7 MAINT STAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SECONDARY VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4.12 SIMULATE ENABLE
                                                                                                                                                                                                                                                                                                                                                                                                                                    POWERON RESETS
                                                                                                                                                                                                                                                                                                                                                                                                                      POWERED HOURS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DEVICE ADDRESS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               MANUFACTURER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DEVICE REVISION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                6.1 REMOTE ACCESS
                                                                                      SERVICE SCHED.
                                                                                                                                                                                                                                                                                                                                                                                                                                                    LCD FAST MODE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DEVICE TYPE ID
                                                                                                                                                                                                                                                                                                                                                                                    4.5.9 ACK
                                                                                                                                                                                                                                1.4.9 ACK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  LCD CONTRAST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              6.2 LOCAL ACCESS
                                                                        4.3.9 ACK
                                                                                                                                                                                                                                             CALIB. SCHED.
                                                                                                                                                                                                                                                                                                                                                                                                        MANUF DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ITK VERSION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5. COMMUNICATION
                                                                                                                                                                                                                                                                                                                                        5.6
SERVICE (cont'd)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              7. LANGUAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  6. SECURITY
                                                                                          4.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     5.1
5.2
5.3
                                                                                                                                                                                                                                                                                                                                                                       2.7.7.1 FILTER TIME CONS..
                                                                                                                                                                                                                                                                          27.6.1 HI LIMIT ALARM
27.6.2 HI LIMIT WARN
27.6.3 LO LIMIT WARN
                                                                                                                                                                                                                                                                                                                        LO LIMIT ALARM
                                                                                                                                                                                                                                                                                                                                          27.6.5 LIMIT HYSTERESI
                                                                                                                                                                                                                                              27.5.4 DECIMAL POINT
                                                                                                                                                    27.4.3 UNIT
27.4.4 DECIMAL POINT
                                                                                                                                                                                               LOWER VALUE
                                                                                                                       2.7.4.1 LOWER VALUE
                                                                                                                                                                                                                UPPER VALUE
                                                                                                                                   27.4.2 UPPER VALUE
                                                                                                                                                                                                                                 LINO.
                                                                                                                                                                                                                                                              2.7.6 ALARMS & WARNI..
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.4.2 MAX MEAS. VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PEAK VALUES
3.4.1 MIN MEAS. VALUE
                                                                                                                                                                                   SCALING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              REMAIN. LIFETIM.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .25 REMIND. 1 (REQ.)
.26 REMIND. 2 (DEM.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         REMAIN SENS LIFE
4.3.1 LIFETIME EXPECT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      REMAIN. LIFETIM.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4.3.4 REMINDER ACTIV.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.4 REMINDER ACTIV.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    REMIND. 1 (REQ.)
REMIND. 2 (DEM.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 LIFET IME EXPECT
                                                                                                      INPUT SCALING
                                                                                                                                                                                                                                                                                                                                                                                                                     28.2 O/P NO LINEAR
28.3 O/P NO OFFSETS
                                                         STATIC REV. NO.
                                                                                                                                                                                                                 27.5.2
                                                                                                                                                                                                                                                                                                                           276.4
                                                                                                                                                                                                                              2.7.5.3
                                                                                                                                                                                                  27.5.1
                                                                                                                                                                                                                                                                                                                                                                                                    2.8.1 MAIN OUTPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TIME IN OPER.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TIME IN OPER.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.3.2 MAX. VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ACK STATUS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3.3.1 MIN. VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MAINT STAT
                                                                                      CHANNEL
                                                                                                                                                                                                                                                                                                                                                         27.7 DISPLAY
                                                                                                                                                                                   2.7.5 OUTPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               REMAIN. DEV. LIFE
                                                                                                                                                                                                                                                                                                                                                                                      MEAS. VALUES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ECHO PROFILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MASTER RESET
                                AIFB 2
27.1 `
27.2 N,
27.3 CH,
27.4 INP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FAULT RESET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ELECT. TEMP.
```

3. DIAGNOSTICS

3.1

28

SETUP (cont'd)

2.7

For more information

www.siemens.com/level

www.siemens.com/continuous-weighing

Siemens Milltronics Process Instruments Inc. Industry Automation (IA) 1954 Technology Drive P.O. Box 4225 Peterborough, ON Canada K9J 7B1

email: techpubs.smpi@siemens.com

www.siemens.com/processautomation

Subject to change without prior notice 7ML19985KL01 Rev. 1.0

© Siemens Milltronics Process Instruments Inc. 2010

