Total Safety Solution Provider! JOKWANG

OKWANG

Think Safety! JOKWANG

Pressure Relief Valves for UV Stamp

JSV-FT100

J•K

JOKWANG I.L.I. CO., LTD.

HEAD OFFICE & FACTORY

No.37, Sanmakgongdan buk10-gil, Yangsan-si, Gyeongsangnam-do(Zip Code : 50567) **Tel** : +82-55-360-0200 **Fax** : +82-55-360-0260 **E-mail** : trade@jokwang.co.kr Copyright © 2016 by JOKWANG I.L.I.CO.,LTD. All rights reserved@1209

www.jokwang.co.kr

INTRODUCTION OF COMPANY

Since its establishment in 1968, JOKWANG I.L.I CO., LTD. with its JK trademark has put every effort in pioneering and specializing as one of the leading valve manufacturing companies. Its devotion has concentrated especially in the area of safety & relief valve, pressure reducing valve, stop valve and steam trap.

With almost half a century of experience, we have earned over a good reputation for quality, reliability, reasonable price and excellent performance.

We determined to contribute to serve your need for your heat control and energy saving effort through our precision design, strict testing, and precision processing. Your kind inquiries would be much appreciated, and we will do our best to give you our business suggestions on them, which can be competitive in your market. In closing, we promise for our continuous endeavor, for more research, and for development work to pay back your positive supports and encouragement.

Nov. May Apr. Dec. Dec. Dec. Oct. Nov. Mar. Apr. Jun. May Nov. May Apr. Dec. Dec. Dec. Mar. Mar Jun. Jun. May Jan. Sep.

COMPANY HISTORY

<i>.</i> 1968	Founded JOKWANG Industries Company in Busan, Korea
y. 1987	Acquired K.S(Korean Industrial Standard) Mark
r. 1989	Acquired Type approval from KR(Korea)
. 1992	Technical Collaboration with VENN in Japan
. 1998	Acquired ISO 9001 Certificate
. 1999	Changed Company name to JOKWANG I.L.I Co., Ltd.
. 2000	Moved to Noksan Industrial Complex in Busan, Korea
. 2003	Acquired Type approval from DNV(Norway)
r. 2004	Acquired Type approval from BV(France)
r. 2004	Acquired KEPIC Certificate
. 2004	Acquired Type approval from LR(UK)
y. 2006	Acquired Safety Relief Valve ASME "UV" Stamp
. 2006	Patent registered for Pilot-Operated Safety Valve
y. 2010	Acquired Type approval from GL(Germany)
r. 2011	Acquired Safety Relief Valve ASME "UV" Stamp(Up to 6,000psig)
. 2011	Awarded Export Tower of 3 Mil. U.S Dollar
. 2011	Acquired Type approval from CCS(China)
. 2011	Acquired ISO14001 Certificate
r. 2012	Acquired OHSAS18001 Certificate
r. 2013	Acquired Pilot type Safety Relief Valve ASME "UV"Stamp
. 2014	Acquired Safety Relief Valve ASME "V"Stamp
. 2015	Acquired Safety Relief Valve C-Sel(China)
y. 2016	Renewed ASME "UV"Stamp
. 2016	Moved to Sanmak Complex in Yangsan, Korea
. 2016	Renewed ASME "V"Stamp
	the second s

Certificate

Quality System Certificate

'V'Stamp of ASME Sec.I 'UV'Stamp of ASME Sec.VIII Certificate of NBBI Safety Valve Capacity ISO 9001 Certificate ISO 14001 Certificate OHSAS 18001 Certificate C-SEL China Special Equipment License

Type Apprival

LR - Lloyd's Register BV - Bureau Veritas KR - Korean Register CCS - China Classification Society DNV · GL - Det norske Veritas · Germanischer Veritas

General information

01 About SRV(Safety Relief Valve)0602 Sizing Program Basis0903 Numbering System10

About SRV (Safety Relief Valve)

General Definition of Safety Relief Valve(SRV)

A pressure relief device is any device that can purge a system from an overpressure condition. More particularly, an SRV is a pressure relief device that is self-actuated, and whose primary purpose is the protection of life and equipment. Through a controlled discharge of a required (rated) amount of fluid at a predetermined pressure, an SRV must prevent overpressure in pressurized vessels and systems, and it operates within limits which are determined by international codes. An SRV is often the final control device in the prevention of accidents or explosions caused by overpressure. when the system pressure has returned to a safe lever at values determined by the codes.

SRVs must be designed with materials compatible with many process fluids, from simple air and water to the most corrosive and toxic media. They must also be designed to operate in a consistently smooth manner on a variety of fluids and fluid phases. These design parameters lead to a wide array of SRV products available in the market today, with the on constant being that they all must comply with the internationally recognized codes.

The SRV must close at a predetermined pressure

Where do SRVs fit in the process?

Every industrial process system is designed to work against a certain maximum pressure and temperature called its rating or design pressure. It is in the economic interest of the users to work as close as possible towards the maximum limits of this design pressure in order to optimize the process output, hence increase the profitability of the system.

Nowadays, pressures and flow in the process industry are controlled by electronic process systems and highly sophisticated instrumentation devices. Almost all control systems are powered by an outside power source(electric, pneumatic, hydraulic). The law requires that when everything fails regardless of the built-in redundancies, there is still an independent working device powered only by the medium it protects. This is the function of the SRV, which, when everything else works correctly in the system, should never have to work. However, practice proves the contrary, and there are a variety of incidents which will allow the system pressure to exceed the design pressure.

Although many pressure relief devices are called SRVs, not every SRV has the same characteristics of or operational precision. Only the choice of the correct pressure safety device for the right application will assure the safety of the system and allow the user to maximize process output and minimize down-time for maintenance purposes. Making the correct choice also means avoiding interference between the process instrumentation set points in the control loop and the pressure relief device limits selected. There SRV operation al limits can vary greatly even when all are complying with the codes.

Pressure relief device

Actuated by inlet static pressure and designed to open during emergency or abnormal conditions to prevent a rise of internal fluid pressure in excess of a specified design value. The device also may be designed to prevent excessive internal vacuum. The device may be designed to prevent excessive internal vacuum. The device may be a pressure relief valve, a non-reclosing pressure relief device, or a vacuum relief valve.

Pressure relief valve

A pressure relief device designed to open and relieve excess pressure and to reclose and prevent the further flow of fluid after normal conditions have been restored.

a A relief valve

It is a spring loaded pressure relief valve actuated by the static pressure upstream of the valve. The valve opens normally in proportion to the pressure increase over the opening pressure. A relief valve is used primarily with incompressible fluids.

b A safety valve

It is a spring loaded pressure relief valve actuated by the static pressure upstream of the valve and characterized by rapid opening or pop action. A safety valve is normally used with compressible fluids.

C A safety relief valve

It is a spring loaded pressure relief valve that

may be used as either a safety or reliefvalve depending on the application.

d A conventional pressure relief valve

It is a spring loaded pressure relief valve whose operational characteristics are directly affected by changes in the back pressure.

e A balanced pressure relief valve

A It is spring loaded pressure relief valve that incorporates a bellows or other means for minimizing the effect of back pressure on the operational characteristics of the valve.

f A pilot operated pressure relief valve

It is a pressure relief valve in which the major relieving device or main valve is combined with and controlled by a self actuated auxiliary pressure relief valve(pilot).

Non-reclosing pressure relief device

A pressure relief device which remains open after operation. A manual resetting means may be provided.

Rupture disk device

A non-reclosing pressure relief device actuated by static differential pressure between the inlet and outlet of the device and designed to function by the bursting of a rupture disk. A rupture disk device includes a rupture disk and a rupture disk holder. About SRV(Safety Relief Valve)

a A rupture disk

It is a pressure containing, pressure and temperature sensitive element of a rupture disk device.

b A rupture disk holder

It is the structure which encloses and clamps the rupture disk in position.(Some disks are designed to be installed between standard flanges without holders.)

c A non fragmenting rupture disk

It is a rupture disk designed and manufactured to be installed upstream of other piping components, such as pressure relief valves, and will not impair the function of those components when the disk ruptures.

Pin-actuated device

A non-reclosing pressure relief device actuated by static pressure and designed to function by buckling or breaking a pin which holds a piston or a plug in place. Upon buckling or breaking of the pin, the piston or plug instantly moves to the full open position.

* Reference - The Safety Relief Valve Handbook - API STD 520 Part 2.

Sizing Program Basis

truction of Sizing Program

After receiving the inquiry or P/O(purchase order) from our precious customers, we input the data for specification of PSV in the COMPUTER SIZING PROGRAM(see fig. 1).

This helps calculate the valve capacity and select the exact size compared than required capacity.

When we calculate the capacity, must-have information such as fluid name & states, temperature, pressure, required capacity and allowable overpressure condition(10%, 16%, 21%) are considered and reflected in the system according to the calculation standard as ASME

Fig. 1 - Sizing Program – ERP System

9

Sec.VIII and API STD 520 and so on.

Also the variety of pressure unit including Kg/ cm²g, Barg, MPag, kPag, pisg and so on could be used in the system.

The whole information for the each PSV is saved in our system and the data sheet with calculation sheet(see fig. 2) based on it could be printed out automatically.

It is possible to trace the saved information of each PSV with customer's name and serial number on the customer's request.

	100			Sheet No.	65 of 114		Rev. No.		0
3	OL 🚒	KWANG I.L.I		roject Name	RAPID at	d Petroch	emicals Intergrated Dev	elopment in P	Aslaysia
14	1.4			Project No.					
			⊢	Date Checked	2016.04.25 M. 5 KM		By		M. J LEE L. C. KIM
_	P&ID No.		1	Unecked	N. S KM		Approved 00-0701-1		L C KIM
	Tag No.		2				5V-7116		
ž									
ZINEN	Service Line		3			to HHD	Storage Drum (3200-'	V-711)	
•	Model No.		4			1	Calci	lation	
	Quantity		5		1				
	Nozzle Type		6		Full	-	Calculati	on of Area	
	Design Type		7	Bellows (Balanced Piston)					
TWW	Bonnet Type		8		Closed				
	Lever Type		9		No	A1 =	W1/(159.44*Kd*V()P	*1.10-Pb)*G)	
	Cap Type		10	Screwed		1			
-	Size. Inlet / C		11		1" X 2"				
NANO	Inlet. Rating		12		CL 300 / RF	-	21400/(159.44*0.619	i*√((10.2*1.1)	0-0)*1000()
	Outlet. Ratin	g / Facing	13		CL 150 / RF	1			
	Body (Base)		14		4216 WCB	1			
	Bonnet		15		4216 WCB	- 1	2.06 m		
-	Seat		16		276 316-st.	1			
TERMLE	Disc		17		276 316-st.	1			
UT W	Guide		18	A	351 CFBM	1			
2	Gasket (Bonn	wrt)	19		PTFE		Calculation	n of Capacity	
	Spring		20		SWOSC				
	Bellows		21	INCO	INEL 625-LCF	1			
	Approved by		22		UV	w -	159.44*A*Kd*v(()P*1.	10-Pb)*G)	
	Comply with	Comply with NACE			No	1			
	EN 10204				Type 3.1	1			
ASIS .	Code			ASN	E Section VII	- I	159.44*3.265*0.615	1*/(10.2*1.	10-0(*1000)
÷	Fire		26		No	1			
	Sizing Basis			0	used Outlet	1			
		Rutture Disk			No	- 1	33.912 kg/h		
-	Fluid / State		29	PEN	ANE / Liquid	1			
		nuid / state Mol. Weight / Specific Gravity			0.56	1			
	Compressibil	ity Factor	31			1			
	Ratio of Spec		32		-	W1	(Required Capacity)		1.008 kp/
	Viscosity		33		0.25 cp	w	(Valve Actual Capac	itev)	2,702 kg/
	Operating / I	Operating / Relieving Temp.			40 / 40 °C	A1	Calculated Orifice A		0.26 g
è		/ Design Max. Temp.	35		- / 80 °C	A	Selected Orifice Are	a)	071 a
cover more	Operating / 5		36	0	5 / 4.4 barg	P	(Set Pressure)		4.49 kgf/m
8	Design Press		37		4 / 4.4 barg	G	(Specific Weight)		560 kg/m
IS INVICE	-	Superimposed - Constant	38		2.2 barg	Pb	(Back Pressure)		2.25 kgf/m
8	Back	Superimposed - Variable	39			Kd	Coefficient of Disch	uircei)	0.615
	Pressure	Built-up	40		0.003 barg	Kc	Rupture disc for fai		1
		Total	41		2.2003 barg	-	P I		
	Allowable Or		42		10%		Rer	narks	
		ure / Blowdown(%)	43	Min. 4.09	2 barg / 7%				
		est Pressure (Body)	44		6.6 barg	* Inlet	Stud Bolt & Nuts		
-	Required Cap		45		1,008 kg/h		Gr.87 & A194 Gr.2H		
z	Valve Actual		46		2,702 kg/h	1			
Sarcmon	Calculated O		47		0.26 m ²	1			
Sat			48		0.710 m ²	1			
45	Selected Orifice Area 48 0.710 m' Orifice Dia(mm) 40 D (9.5)								
SAVE I	Reaction Fon								
3	Reaction Fon Noise Level	ae	50			1			
-	Paint System	A.C.L.	51			+			
		& LOIDT	52		No	-			
	Test Gag		53						
Ĕ		Bug screen							

Fig. 2 - Data & Calculation Sheet

SV-FT100

- 01 Cap with Accessory
 02 Sepcification
 03 Part Name & Material
 04 Dimensions
 05 Capacity Tables (USC Units)
 04 Capacity Tables (Matric Units)
- 06 Capacity Tables (Metric Units)

Cap with Accessory

None Lever

A component used to restrict access and/or protect the adjustment screw in a reclosing pressure relief device. It may or may not be a pressure containing part.

Plain Lever

A device to apply an external force to the stem of a pressure relief valve to manually operate the valve at some pressure below the set pressure.

Packed Lever

As indicated by the name, this lever assembly is packed around the lever shaft, so that leakage will not occur around the upper part of the valve when the valve is open or when back pressure is present. The packed lever should be used when positive protection against leakage is required.

Cap with Gag

12

A device used on re-closing pressure relief devices to prevent the device from opening. The reason why gag is used is to hold the valve closed while a valve is being subjected to hydrostatic test.

* Ref.: ASME Sec. V III

2 Specification

Туре	Conventional & Balanced
Applicable Code	ASME Sec. VIII
Size	1" / 2" ~ 1" × 1"
Orifice	D(0.11in ²)
	STEAM : 15 ~ 2500 psig(1.03 ~ 172,.0bar)
Set Pressure Range	AIR : 15 ~ 4500 psig(1.03 ~ 310.0bar)
	WATER : 15 ~ 4500 psig(1.03 ~ 310.0bar)
Allowable Leakage	API STD 527

* PT thread also available

-	

•	Standard Connections*
	1 / 2" MNPT × 1" FNPT
	3 / 4" MNPT × 1" FNPT
	3 / 4" FNPT × 1" FNPT
	1" FNPT × 1" FNPT
	3 / 4" FNPT × 1" FNPT
)	1" MNPT x 1" FNPT

Part Name & Material

Conventional Type

No.	Part Name	Material
1	Base	SA276 304
2	Bonnet	SA216 WCB
3	Сар	Carbon Steel
4	Disc	316 Stainless Steel
5	Disc Guide	316 Stainless Steel
6	Disc Holder	316 Stainless Steel
7	Adjust Ring	Stainless Steel
8	Valve Stem	Stainless Steel
9	Spring	Carbon Steel
10	Spring Seat	Stainless Steel
11	Adjust Screw	Stainless Steel
12	Lock Nut	Stainless Steel
13	Set Screw	Stainless Steel
14	Set Screw Gasket	PTFE
15	Bonnet Screw Gasket	PTFE
16	Cap Gasket	PTFE

The material could be changeable upon request.

No.

Part Name	Material
Base	SA276 304
Bonnet	SA216 WCB
Сар	Carbon Steel
Disc	316 Stainless Steel
Disc Guide	316 Stainless Steel
Disc Holder	316 Stainless Steel
Adjust Ring	Stainless Steel
Valve Stem	Stainless Steel
Spring	Carbon Steel
Spring Seat	Stainless Steel
Adjust Screw	Stainless Steel
Lock Nut	Stainless Steel
Set Screw	Stainless Steel
Set Screw Gasket	PTFE
Bonnet Screw Gasket	PTFE
Cap Gasket	PTFE
O-Ring	VITON

The material could be changeable upon request.

Total Safety Solution Provider! | JOKWANG CAT.NO. FT 100

Dimension

•	

USC Units

Orifice	Pressure	Standard Con	nection	Dimension(inch)		
Diamater, mm (Area, inch ²)	Range (psig)	Inlet	Outlet	L	A	н
	15 to 780	1/2" MNPT	1" FNPT	2	3 ⁵ / ₁₆	11 ³ / ₁₆
		3/4" MNPT	1" FNPT	2	3 ⁵ / ₁₆	11 ³ / ₁₆
9.5		3/4" FNPT	1" FNPT	2	3 ⁵ / ₁₆	11 ³ / ₁₆
(70.9)		1" FNPT	1" FNPT	2	3 ⁵ / ₁₆	11 ³ / ₁₆
	780 to 4500	3/4" FNPT	1" FNPT	2 ⁷ / ₁₆	3 ⁵ / ₁₆	13 ² / ₁₆
		1" MNPT	1" FNPT	2 ⁷ / ₁₆	3 ⁵ / ₁₆	13 ² / ₁₆

Metric Units

Orifice	Pressure	Standard Con	nection	Dimension(mm)		
Diamater, mm (Area, inch ²)	Range (bar)	Inlet	Outlet	L	А	н
	1.03 to 53.8	1/2" MNPT	1" FNPT	51	84	284
		3/4" MNPT	1" FNPT	51	84	284
9.5		3/4" FNPT	1" FNPT	51	84	284
(70.9)		1" FNPT	1" FNPT	51	84	284
	53.8 to 310.2	3/4" FNPT	1" FNPT	62	84	334
		1" MNPT	1" FNPT	62	84	334

* PT thread also available

16

5	Capacity	Table

USC Units Set Pressure Air Steam Water (psig) (SCFM) (Lbm/hr) (GPM) 160.6 12.7 15 56.9 20 65.6 185.1 14.3 30 83.0 234.2 17.2 40 102.1 288.2 19.8 121.3 342.2 50 22.2 60 140.4 396.2 24.3 70 159.6 450.2 26.2 178.7 28.0 80 504.3 90 197.8 558.3 29.8 100 217.0 612.3 31.4 312.7 882.3 150 38.4 200 408.4 1152.4 44.3 250 504.1 1422.4 49.6 300 599.8 1692.5 54.3 350 695.5 1962.5 58.7 400 791.2 2232.6 62.7 450 886.9 2502.6 66.5 500 982.6 2772.7 70.1 600 1174.0 3312.8 76.8 700 1365.4 3852.9 83.0 800 1556.8 4393.0 88.7 900 1748.2 4933.1 94.1 1000 1939.6 5473.2 99.2 1100 2131.0 6013.3 104.0 1200 2322.4 6553.4 108.6 1300 2513.8 7093.5 113.1 117.3 1400 2705.2 7633.6 1500 2896.6 8173.7 121.5 1600 3088.0 8713.8 125.4

17

es (USC Units) 🛛 👪

Set Pressure (psig)	Air (SCFM)	Steam (Lbm/hr)	Water (GPM)
1700	3279.4	9253.9	129.3
1800	3470.8	9794.0	133.0
1900	3662.2	10334.1	136.7
2000	3853.6	10874.2	140.2
2100	4045.0	11414.3	143.7
2200	4236.4	11954.4	147.1
2300	4427.8	12494.5	150.4
2400	4619.2	13034.6	153.6
2500	4810.6	13574.7	156.8
2600	5002.0		159.9
2700	5193.4		162.9
2800	5384.8		165.9
2900	5576.2		168.9
3000	5767.6		171.8
3100	5959.0		174.6
3200	6150.4		177.4
3300	6341.8		180.1
3400	6533.2		182.9
3500	6724.6		185.5
3600	6916.0		188.2
3700	7107.4		190.8
3800	7298.8		193.3
3900	7490.2		195.8
4000	7681.6		198.3
4100	7873.0		200.8
4200	8064.4		203.2
4300	8255.8		205.6
4400	8447.2		208.0
4500	8638.6		210.4

Total Safety Solution Provider! | JOKWANG CAT.NO. FT 100

Capacity Tables (Metric Units) 🔅

Metric Units

Set Pressure (bar)	Air (SCFM)	Steam (Lbm/hr)	Water (GPM)	Set Pressure (bar)	Air (SCFM)	Steam (Lbm/hr)	Water (GPM)
1.03	56.9	160.6	12.7	117.21	3279.4	9253.9	129.3
1.38	65.6	185.1	14.3	124.10	3470.8	9794.0	133.0
2.07	83.0	234.2	17.2	131.00	3662.2	10334.1	136.7
2.76	102.1	288.2	19.8	137.89	3853.6	10874.2	140.2
3.45	121.3	342.2	22.2	144.79	4045.0	11414.3	143.7
4.14	140.4	396.2	24.3	151.68	4236.4	11954.4	147.1
4.83	159.6	450.2	26.2	158.58	4427.8	12494.5	150.4
5.52	178.7	504.3	28.0	165.47	4619.2	13034.6	153.6
6.21	197.8	558.3	29.8	172.37	4810.6	13574.7	156.8
6.89	217.0	612.3	31.4	179.26	5002.0		159.9
10.34	312.7	882.3	38.4	186.16	5193.4		162.9
13.79	408.4	1152.4	44.3	193.05	5384.8		165.9
17.24	504.1	1422.4	49.6	199.95	5576.2		168.9
20.68	599.8	1692.5	54.3	206.84	5767.6		171.8
24.13	695.5	1962.5	58.7	213.74	5959.0		174.6
27.58	791.2	2232.6	62.7	220.63	6150.4		177.4
31.03	886.9	2502.6	66.5	227.53	6341.8		180.1
34.47	982.6	2772.7	70.1	234.42	6533.2		182.9
41.37	1174.0	3312.8	76.8	241.31	6724.6		185.5
48.26	1365.4	3852.9	83.0	248.21	6916.0		188.2
55.16	1556.8	4393.0	88.7	255.10	7107.4		190.8
62.05	1748.2	4933.1	94.1	262.00	7298.8		193.3
68.95	1939.6	5473.2	99.2	268.89	7490.2		195.8
75.84	2131.0	6013.3	104.0	275.79	7681.6		198.3
82.74	2322.4	6553.4	108.6	282.68	7873.0		200.8
89.63	2513.8	7093.5	113.1	289.58	8064.4		203.2
96.53	2705.2	7633.6	117.3	296.47	8255.8		205.6
103.42	2896.6	8173.7	121.5	303.37	8447.2		208.0
110.32	3088.0	8713.8	125.4	310.20	8638.6		210.4

18

Memo

 	-	

