Flow nozzle

Model: F600

Spec. sheet no. FD06-01

[H[**C €**

Description

The flow nozzles, more costly than other orifice due to their structure, are suited for determining the flow rates of fluids flowing at high temperature and high pressure. Under the same measuring conditions, a flow nozzle has a higher mechanical strength, can permit the flow of more than 60 percent great volume of a fluid, and can measure the flow rates of fluids containing solid particles less disturbed than an orifice having the same bore.

Thus, they are suited, in addition, for high speed flowing fluids. We can supply not only single flow nozzles, but also flow nozzles having welded short pipes on both their upstream and downstream sides.

Specification

Nozzle mounting types

Flange type Weld-in type Holding ring type PTC-6

Flow calculation standards

- Long-radius flow nozzle
 JIS Z 8762, ISO 5167-3, ASME MFC-3M
- ISA 1932, flow nozzle ISO 5167-3 JIS Z 8762

Pressure taps

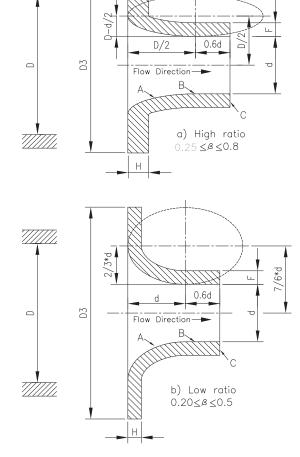
1D and ½D tap, throat tap

Nominal pipe sizes available

50 ~ 600 mm 2 ~ 24"

β Limit

 $0.2 < \beta < 0.8$


(Low - beta) long - Radius nozzle $0.2 \le \beta \le 0.5$ (High - beta) long - Radius nozzle $0.25 \le \beta \le 0.8$ β : Ratio of throat to pipe diameter = d/D (d: Throat diameter)

Nozzle thicknesses

Maker standards

Material

A182-F11, F22, F91 A182-F304 A182-F316 / F316L and Other

WISE Data Sheet 10/2020

| | F600 01

1. Base model

F600 Flow nozzle

2. Line size

A01	1/2"	J01	15A	
A02	3/4"	J02	20A	
A03	1"	J03	25A	
A04	11/2"	J04	40A	
A05	2"	J05	50A	
A06	3"	J06	80A	
A07	4"	J07	100A	
80A	6"	J08	150A	
A09	8"	J09	200A	
A10	10"	J10	250A	
A11	12"	J11	300A	
A12	14"	J12	350A	
A13	16"	J13	400A	
A14	18"	J14	450A	
A15	20"	J15	500A	
A16	24"	J16	600A	
ZZZ	Other			

3. Connection

A01	150Lb RF	J01	10K RF
A02	300Lb RF	J02	16K RF
A03	600Lb RF	J03	20K RF
A04	900Lb RF	J04	30K RF
A05	1500Lb RF	J05	40K RF
A06	2500Lb RF	J06	63K RF
A11	150Lb FF	J11	10K FF
A12	300Lb FF	J12	16K FF
A13	600Lb FF	J13	20K FF
A14	900Lb FF	J14	30K FF
A15	1500Lb FF	J15	40K FF
A16	2500Lb FF	J16	63K FF
A21	150Lb RTJ	J21	10K RTJ
A22	300Lb RTJ	J22	16K RTJ
A23	600Lb RTJ	J23	20K RTJ
A24	900Lb RTJ	J24	30K RTJ
A25	1500Lb RTJ	J25	40K RTJ
A26	2500Lb RTJ	J26	63K RTJ
ZZZ	Other	B00	B.W

4. Element type

- W Weld-in
- Holding-ring Н
- Flanged
- K Knock-pin
- ISA 1932
- PTC-6
- 0 Other

5. Tap type

- 1 1/2" S.W, 1 Pair
- 3 3/4" S.W, 1 Pair
- 0 Other

6. Nozzle material

- **6S** A182 F316
- 6L A182 F316L
- ZZ Other
- 11 A182 F11
- 22 A182 F22
- 91 A182 F91
- 92 A182 F92

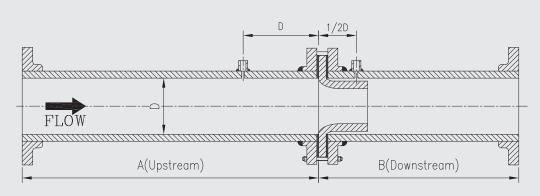
7. Pipe material

- A106-B 6B
- A106-C 6C
- ZZ Other

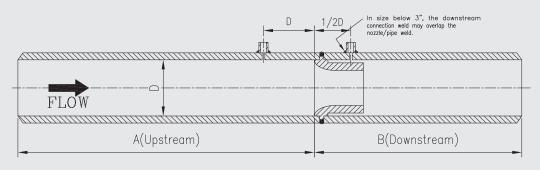
22

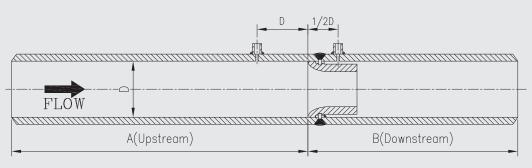
- A335 P11 11
- A335 P22 91 A335 P91
- 92 A335 P92
- 8. Meter run type
 - 1 Up / Downstream: 4D / 2D
 - Up / Downstream : 20D / 10D 2

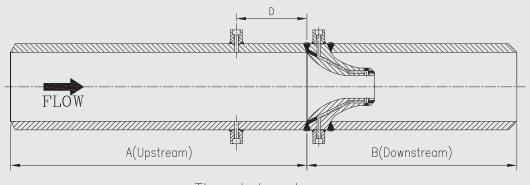
9. Option


- С Calibration test
- S Straightener
- 0 Other
- Ν None

Sample ordering code


campio cracining coac										
1	2	3	4	5	6	7	8	9		
F600	A01	A01	W	1	6S	6B	1	С		


F600_02 | WISE Data Sheet 10/2020


— Flange type —

- Weld in type -

- Holding ring type -

- Throat tap type -

Differential pressure and pressure loss

When a throttle element is interposed in a closed passage of fluid in piping, a difference is produced between the pressures upstream and downstream the throttle element as illustrated in Fig.1. This difference ($\triangle P=p1-p2$) is called differential pressure.

The fluid passing through the section 2 gradually regains its pressure as it flows downstream, but the downstream pressure cannot be recovered up to the upstream pressure, part of the pressure being lost. This loss is called a pressure loss (permanent pressure loss = p3). The extent of this pressure loss depends on the type of throttle elements and their open area ratio, as shown in Fig.2 The relation given by:

$$\mathbf{Q} = \mathbf{C}\sqrt{\Delta P/\rho}$$

$$\mathbf{Qn} = \mathbf{C}\sqrt{\Delta P * \rho/\rho n}$$

$$\mathbf{W} = \mathbf{C}\sqrt{\Delta P * \rho}$$

Q (m³/h): Volume rate of flow at density

operating conditions

Qn (Nm³/h): Volume rate of flow at density

bass conditions

W (kg/h): Weight rate of flow

 ρ (kg/m³): Density in operating conditions ρ n (kg/Nm³): Density in base conditions

C: Constant coefficient

From the above, the relation between the flow rate and the differential pressure where the density is constant but the flow rate is variable is as listed in table 1. In other words, the flow rate is obtainable by measuring the differential pressure.

When the density is variable (When the pressure and temperature are variable), the true flow rate can be given by compensating the variate of the density by the above equation (This however, is not applicable when the density varies to a great extent.)

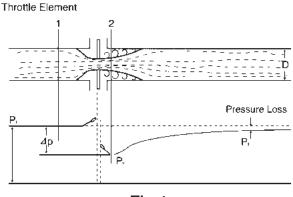


Fig.1

Table 1 : Relation between Flow Rate and Differential Pressure

Flow rate (%)	100	90	80	70	60	50	40	30	20	10	0
Differential pressure	100	81	64	49	36	25	16	9	4	1	0

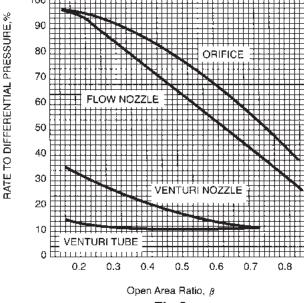


Fig.2

F600 04 | WISE Data Sheet 10/2020