

Owner's Manual

EXP-2000A

EXBATTERY WEIGHING INDICATOR

TABLE OF CONTENTS

1. Introduction	4
2. Explosion structure & class	4
3. Caution	5
4. Features	6
5. Specification	6
6. Measure of appearance	8
7. Front display description	9
8. Installation & connection	11
9. Communication program	14
10. Transmit data format	15
11. Test mode	16
12. Calibration mode	18
13. Set mode	20
14. Main usage of EXP-2000A	24
15. Accessory	28
16 Cheek message and trouble shooting	20

1. Introduction

We greatly appreciate for your purchase of the CAS Explosion proof indicator.

These goods have hold excellent performance and splendid properties through strike tests as well as devoting ourselves under severe quality management.

The EXP-2000A indicator is specially designed not to transmit the internal flame to external area even if a internal explosion occurs in explosive environment, and is shaped firmly and delicately designed to coincide with the requirements of severe industrial field.

Before using EXP-2000A, It is recommended to read this manual carefully and to apply the function application fully.

2. Explosion Structure & Class (Ex d B T4)

Section	Description	Marking
Type of protection	Flameproof enclosure	Exd
Apparatus Group	Surface Industries	В
Temperature Class	Max. surface temperature 135	T4

Explosion Class	T1	T2	Т3	T4
Class 1 (USE)	Acetone, Ammonium, Carbon Monoxide, Titan, Acetic Acid, Ethyl Acetate, Toluene, Propane, Benzene, Methanol, Methane	Ethanol, Buanol, Butane, Acetic Anhydridede	Gasoline, Hexane	Acetaldehyde, Ethyl Ether
Class 2 (USE)	Cool Gas	Ethylene Oxide		
Class 3 (Don't use)	Water Gas Hydrogen	Acetylene		

(Be able to use EXP-2000A only in the inside thick line)

3. Cautions

(1) Cautions when install EXP-2000A at explosion zone.

- Check to tighten bolts on a front cover.
- Certainly Connect EXP-2000A AC POWER to AC220V, 50Hz/60Hz AC power.
- Should use power supply cable included an earthing line.
- When connect AC POWER at explosion a zone, certainly use PLUGS AND RECEPTACLES(Cable Gland).

(2) Cautions when check EXP-2000A at a fixed period.

- Certainly cut off power supply Before open the front cover.
- When assemble the front cover, certainly tighten bolts.

♣ CHECK ITEMS

ITEMS	Check Method	Description	Remark	
CASE	Naked eye	Have no rust, damage	Clean, Exchange	
Display Window	Naked eye	Have no damage	Exchange	
BOLT	Naked eye, Touch	Don't get loose. Have no rust, dust.	Tighten, Clean	
PACKING	Naked eye. Touch	Have no crack, notable modify.		
Cable Gland	Naked eye, Touch	Have no damage, blazing fire. Tighten, Don't get loose. Exchange		
Terminal	Naked eye	Don't get loose.	Tighten	

(3) Entering Method of External Wire

- External Wire should be passed through CABLE GLAND and connected to terminal.
- The Conduit is used PF 1/2" size.

(4) CAUTIONS before uses EXP-2000A

- Do not press the keys hardly, for the keys are in operation with soft touch.
- Keep away EXP-2000A from the rain.
- Avoid sudden temperature change.
- Do not install EXP-2000A in a place with high voltage and excessive electrical noises.
- Keep it in dry place.
- Do not use under direct rays.
- Do not use at the place with excessive electrical

4. The Features of EXP-2000A

(1) Features

- High quality, High accuracy
- Appropriate for weight and measurement system
- Easy operation
- RFI/EMI screened
- WATCHDOG circuitry (System restoration)
- WEIGHT BACK-UP (Weight memory at sudden power failure)

(2) Main Function

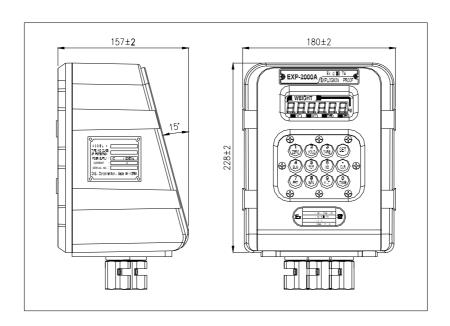
- Store date, time and calculated data at sudden power failure
- Adjustable display rate(Digital filter function)
- Printer connection (serial printer)
- Tare weight setting with keys
- Storage of measured times
- PC interface
- Zero-tracking function
- Automatic, manual hold function
- Users can set the desirous max. weight and a division freely
- Print date and time by built-in clock
- Self hardware test

5. Technical Specification

■ Analog Part & A/D Conversion

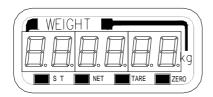
Loadcell Exciting Voltage	DC 5V, Up to 4×350Ω load cells
Full Scale Input Signal	20 mV, including dead load
Zero Adjust Range	0.05 mV 5 mV
Input Sensitivity	2 μV/D (H-44, OIML)
	0.5 μV/D (Non H-44, OIML)
System Linearity	0.02% of FS
A/D internal resolution	1 / 200,000
A/D external resolution	5,000 dd (H-44, OIML)
	30,000 dd (H-44, OIML)
A/D conversion speed	10 times/sec

■ Digital Part


	TM
Span calibration	Full Digital Calibration : SPAC [™] (Single pass automatic span calibration)
Display	LED (6 digit)
Size of letter	14 mm (Height)
Division	×1, ×2, ×5
Display below zero	"-" minus signal
Permitted limit tare	Full capacity

"STABLE"	■ LAMP	Weight is stable
"NET"	■ LAMP	ON (net weight), OFF (gross weight)
"TARE"	■ LAMP	tare is used
"ZERO"	■ LAMP	"0" kg

■ General Specification


Power	AC 220V, 50/60 Hz Optional : AC 110V, 50/60 Hz
Size	180(W) x 228(D) x 157(H)
Temperature	-10 ~ +40
Weight/Internal Cubic Volume	Approx. 7.4 kg / 2500 cm
Current	Approx. 0.1 A

6. MEASURE OF APPEARANCE

7. Front Display Description

(1) LED lamp

Stable Lamp : ON when the Weight is stable.

Net Lamp : ON when the current weight is NET weight.
Zero Lamp : ON when the Current weight is 0kg.
Tare Lamp : ON when the Tare weight is stored.

(2) Keyboard

■ ZERO Key

Used to return the display to the center of ZERO when the platform is empty. Used to enter the "TEST" mode.

■ HOLD Key

Use to weight unstable things.
Used to enter the "SET" mode.

■ TARE Key (automatic tare weight input)

Used for weighing item by using the container. When this key is pressed, the scale stores current weight as the tare weight.

If you perss "TARE" key in unload condition, tare setting is released.

Used to enter the "CAL" mode.

■ SUM Key

Used to print total weight of previously weighed result by ID number. For example, let's assume that the current specified ID number is 4. The print form is as belows.

SUM TOTAL		
DATE :	1997. 9. 25	
TIME :	9:30	
ID :	14	
COUNT :	5	
TOTAL :	350.0 kg	

After printing is done, the total weight and count corresponding to the ID number is initialized to 0.

■ TOT Key

Used to print total weight regardless of ID number. The print form is as belows.

OVERALL TOTAL		
DATE :	1997. 9. 25	
TIME :	9:30	
ID :	14	
COUNT :	5	
TOTAL :	350.0 kg	

After printing is done, the total weight and count remains.

■ ID Key

Type "ID" key, the ID code using by numeric key and then the ID code is registered. The code range is from 0 to 4.

■ PRT Key

Print key.

If this key is pressed, the print format you chose in set mode (see function F06) is to be printed.

■ G/N Key (Gross/Net key)

Toggle key between GROSS weight and NET weight. The annunciators and display will alternate between GROSS and NET as well. In case tare weight is REGISTERED, tare and item's total weight is G weight and only item's weight is N. weight.

■ K.T Key (key tare key)

When you already know the tare weight, press K.T Key and input tare weight using by numeric keys and memorize it by pressing ENTER key.

■ TIME Key

Used to check date and time.

■ CLR Key

Usage 1: Člear the number you are entering on the display.

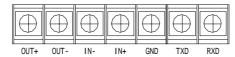
Usage 2: Used to enter such floating point number as 0.2, 0.01 etc.

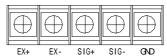
■ SET Key

Used to store current condition and exit in CALIBRATION, TEST, SET mode

8. INSTALLATION & CONNECTION

(1) Internal terminal connection


■ TB1 : AC POWER


-AC : 220V,50/60Hz (Optional : AC 110V, 50/60Hz)

- GND : Ground

■ TB2: RS-232/RS-489(OPTION)

■ TB3: Load cell.

(2) Load cell connection

Connect load cell wire to terminal in the indicator.

* Must connect load cell wire to be through electro-pipe.

Note. Each load cell manufacturer's or model's wire color could be different. In that case, please note the following diagram.

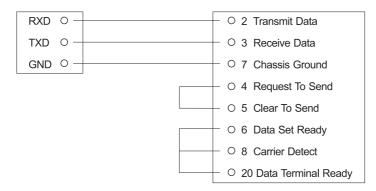
* Manufactures's wire color

Terminal	EX+	EX-	SIG+	SIG-	GND
CAS	RED	WHITE	GREEN	BLUE	CASE
KYOWA	RED	BLACK	GREEN	BLUE	CASE
INTERFACE	RED	BLACK	GREEN	WHITE	CASE
P.T	RED	BLACK	GREEN	WHITE	CASE
BLS	RED	BLACK	WHITE	RED	YELLOW
SHOWA	RED	BLUE	WHITE	BLACK	CASE
SHINKOH	RED	BLACK	GREEN	WHITE	CASE
TMI	RED	WHITE	GREEN	BLUE	YELLOW
TML	RED	BLACK	WHITE	GREEN	CASE
TFAC	RED	BLUE	WHITE	BLACK	YELLOW
HUNTLEIGH	GREEN	BLACK	RED	WHITE	CASE

(3) RS 232C Serial interface

■ Serial Printer

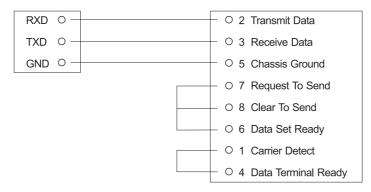
F04: 0 (Manual), 1 (Automatic)	F05: 1 (7000 Series), 2 (ND Series)
F06: Print Form	


■ Sub Display Connection (CD-3000A,CD-3010A,CD-3040A,CD-3060A)

RS-232C port of EXP-2000A Sub display RS-232C port.

F04: 0 (Manual), 1 (Automatic)	F05: 1 (7000 Series), 2 (ND Series)
F06: Print Form	

■ PC - 25 pin

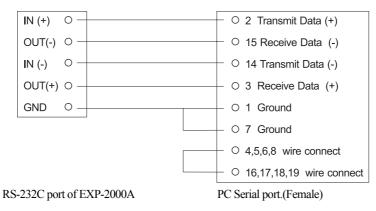


RS-232C port of EXP-2000A

PC RS-232C port. (Female)

F05 : 0(Printer is not used)	F07 : Baud rate set
F08: Data set sent to PC	F09 : Device Number

■ PC - 9 pin



RS-232C port of EXP-2000A

PC RS-232C port.(Female)

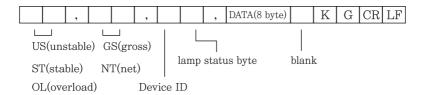
F05 : 0(Printer is not used)	F07: Baud rate set
F08 : Data set sent to PC	F09 : Device Number

(4) RS 422/485 Connection -OPTION-

F05 : 0(Printer is not used)	F07: Baud rate set
F08: Data set sent to PC	F09 : Device Number

9. Communication Program

```
■ C Language
   #include <bios.h>
   #include <conio.h>
   #define COM1
   #define DATA_READY 0x100
   #define TRUE
                          1
   #define FALSE
                          0
   #define SETTINGS ( 0x80 | 0x03 | 0x00 | 0x00)
   int main(void)
   { int in, out, status, DONE = FALSE; bioscom(0, SETTINGS, COM1);
      cprintf("... BIOSCOM [ESC] to exit ...\n");
      while (!DONE)
      { status = bioscom(3, 0, COM1); if (status & DATA_READY)
        if ((out = bioscom(2, 0, COM1) & 0x7F) != 0) putch(out);
        if (kbhit())
        { if ((in = getch()) == 'x1B') DONE = TRUE;
            bioscom(1, in, COM1);
     return 0;
```


■ GW-BASIC Language

10 OPEN "COM1:9600,N,8,1" As #1
20 IF LOC(1) = 0 THEN 60
30 A\$ = INPUT\$(1,1)
40 PRINT A\$;"";
50 GOTO 20
60 B\$=INKEY\$: IF B\$ ="" THEN 20
70 PRINT B\$;"";
80 PRINT #1,B\$;
90 GOTO 20

10. Tramsmit Data Format

(1) Baud rate: 2400 bps - 19200 bps Choose Baud rate in SET mode(F07). Refer to SET mode.

- (2) Data bit: 8, Stop bit: 1, Parity bit: None
- (3) Code: ASCII
- (4) When data is sent to computer? Set in SET mode(F08).
- (5) Data Format

11. TEST MODE

(1) How to enter this mode

Turn on the power while pressing the $\binom{1}{ZERO}$ key on the front of the indicator.

(2) Test Menu (TEST 1 - TEST 5)

TEST 1: Key test

TEST 2: LED Display test

TEST 3: Load cell test and A/D conversion test

TEST 4 : Serial interface test

TEST 5: Printer test

TEST 1

FUNCTION: Key test				
KEY	LED DISPLAY	DESCRIPTION		
SET : to initial menu Other keys : Perform test	KEY -	TEST 1 condition. Press the key to be test and the no. and code corresponding to the key is displayed.		

< Key List >

1	2	3	4	5	6
ZERO	HOLD	TARE	SUM	TOT	ID
01	02	03	04	05	06
7	8	9	0	·	SET
PRT	G/N	K.T	TIME	CLR	
07	80	09	00	10	11

TEST 2

FUNCTION: LED screen test			
KEY	LED DISPLAY	DESCRIPTION	
SET: to initial menu	dISP	8.8.8.8.8.8.	
Other keys: Perform test	uisr		

TEST 3

FUNCTION : A/D converter test			
KEY LED DISPLAY DESCRIPTION			
SET : to initial menu	23500	TEST 3 condition Dispaly digital value of current weight. This value means converted digital value.	

REF 1. Check whether digital value is changing.

If the digital value is fixed or zero is displayed, please check the connection of load cell

TEST 4

FUNCTION : RS-232 test with computer (SERIAL port)			
KEY	LED DISPLAY	DESCRIPTION	
SET : to initial menu	0103	01: Receive	
Other keys : Transmit key	0103	03 : Transmit	

- REF 1. Do this test after the connection of serial port of computer and serial port of indicator is done.
- REF 2. Send no.1 in computer keyboard and check if indicator receives no.1 Send no.1 in indicator keyboard and check if computer receives no.1
- REF 3. Do this test after baud rate is specified in SET mode (F07).

TEST 3

FUNCTION : Printer test (PRINTER)			
KEY	LED DISPLAY DESCRIPTION		
SET : to next menu	Good	No error in printer	
\Other keys : Perform test	Good	No endi in printer	

- REF 1. Perform test only when the printer option are installed.
- REF 2. Previously specify the printer which will be used in the conversion mode (F-08)
- REF 3. "GOOD" message is displayed if the printer connection and specification is done correctly. If not, "Pr-Err" message is displayed.
- REF 4. The test output format of printer is like follows.

CAS Corporation TEL 02-475-4661 FAX 02-475-4668 TEST OK

12. CALIBRATION MODE

(1) How to enter

Turn on the power while pressing the $\binom{3}{\text{TARE}}$ key on the front of the indicator.

(2) CALIBRATION MENU (CAL 1 - CAL 5)

CAL 1: Maximum Capacity CAL 2: Minimum Division CAL 3: Setting Weight CAL 4: Zero Calibration CAL 5: Span Calibration

CAL 1 (press 'SET' key to move to CAL 1)

FUNCTION : Maximum Capacity SET			
RANGE> 1 ~ 99,999			
KEY	LED DISPLAY	DESCRIPTION	
SET key : store and move into next menu	5000	5000 kg	
NUMERIC key : set value change CLR key : initial value	20000	20000 Kg	

- REF 1. The maximum capa. means the maximum weight that scale can measure.
- REF 2. Do not input the resolution, there is no need to input the resolution which is automatically calculated.

CAL 2

FUNCTION: Minimum Division SET RANGE> 0.001 ~ 500				
KEY	LED DISPLAY	DESCRIPTION		
SET key: store and move into next menu NUMERIC key: set value change CLR key: input the point, initial value.	1 0.2 0.05 0.001	1 kg 0.2 kg 0.05 kg 0.001 kg		

- REF 1. The minimum division means the value of one division.
- REF 2. External resolution is obtained by dividing the min. division by the maximum capacity. Set the resolution to be within 1/10,000.
- REF 3. When you press other keys except '1', '2', '5' and '0', A retry beep will sound.

CAL₃

FUNCTION : Setting Weight In Span CALIBRATION RANGE --> 1 ~ Maximum capacity of CAL1 KEY LED DISPLAY DESCRIPTION SET key : store and move into next menu NUMERIC key : set value change CLR key : input the point, initial value. L= 500 500 kg

REF 1. The setting weight shall be within the range of 10 % \sim 100 % of maximum weight.

CAL 4

FUNCTION :Zero Calibration		
KEY	LED DISPLAY	DESCRIPTION
		Unload the tray and press SET
SET key: Zero calibration	UnLOAd	The program moves into Span calibration automatically.

REF 1. If Zero calibration is done without any error, SUCCESS message is displayed and program moves into CAL 5 automatically.

REF 2. If the zero value is too low, high check message (CH 14) is displayed.

CAL 5

FUNCTION :Span Calibration		
KEY	LED DISPLAY	DESCRIPTION
SET key : Span calibration	LOAd	Load the weight which was set in CAL 3 and press SET key.

REF 1. If Span calibration is done without any error, Good message is displayed.

REF 2. If the span is low, check message (CH 13) is displayed.

13. SET MODE

(1) How to enter this mode?

urn on the power while pressing the (HOLD key on the front of the indicator.

(2) SET MENU (FO1 - F09)

GENERAL FUNCTION	
F01 Change DATE / TIME	Year, Month, Day / Hour, Minute, Second
F02 Digital Filter	1 7
F03 Weight Backup	Power-on actual weight

PRINT FUNCTION	
F04 Manual Print / Automatic Print	0/1
F05 Employed printer set	Serial 7000series printer, ND series printer
F06 Print-Form set	5 Type

SERIAL INTERFACE	
F07 Baud rate set	2400, 4800, 9600, 19200bps
F08 Data set sent to computer	0, 1, 2, 3
F09 Device number	00 99

GENERAL FUNCTION

F01

Function	Change of year, month, date	
Set value	Example LED	Meaning
	97.05.01	May 1st, 1997

Note 1. Modify the year, month and date by pressing the numerical keys. Note 2. The program moves into Time adjustment automatically.

Function	Time adjustment	
	Example LED	Meaning
Set value	10.30.01	Ten thirty and one second, A.M.
	22.20.00	Exact time of ten twenty P.M.

Note 1. Modify the time by pressing the numerical keys.

F02

Function	Digital Filter	
	Example VFD	Meaning
Set value	1	in high speed
(from 1 to 7)	4	in normal speed
	7	very slowly

Note 1. Adjust the speed variation of the weight on the screen to be suitable for the current usage.

F03

Function	Weight backup	
Octobro	Example LED	Meaning
Set value (1, 7)	0	weight backup is off
(1, 7)	1	weight backup is on

Note 1. If the AC power is OFF suddenly and weight backup is ON, the scale recovers previous weight after the power is ON.

Note 2. On and Off are alternately displayed by pressing the numerical keys.

PRINT FUNCTION

F04

Function	Automatic print	
Octobro	Example LED	Meaning
Set value (0, 1)	0	Manual print
(0, 1)	1	Automatic print

Note 1. Upon setting the automatic print, the print is carried out without pressing the print key when the weight is in stable state.

F05

Function	Employed printer set	
	Example LED	Meaning
Set value	0	Printer is not used
(from 0 to 2)	1	Serial printer 7000 series
	2	Serial printer ND series

Note 1. The default value is set to 0 at factory.

F06

Function	Print Form	
	Example LED	Meaning
	0	form 0 (date, time, Serial No., ID No., Net weight)
Set value (from 0 to 5)	1	form 1 (date, time, Weigh No., Net weight)
	2	form 2 (date, time, Gross, Tare, Net weight)
	3	form 3 (date, time, Net weight)
	4	form 4 (date, time, ID No., Net weight)
	5	form 5 (date, time, serial No., net weight)

Note 1. Serial No. increment from 1 to 999 and initialized to 1 after "GRAND TOTAL" key pressed or power-off.

Note 2. Weigh No. increment from 1 to 999 and is not initialized to 1 after power-off.

[Output Form 0]

Date, Time

Serial No., ID No., Net weight

l	1997.	10. 1	12:30
	001,		50.0 kg
	002,	ID_12,	100.0 kg
	003,	ID 19,	200.5 kg

【 Output Form 2 】

Date, Time

Gross, Tare, Net weight

1997. 10. 1	12:30
Gross :	1000.0 kg
Tare :	0 kg
Net :	1000.0 kg
Gross:	2000.0 kg
Tare:	500.0 kg
Net:	1500.0 kg

[Output Form 4]

Date, Time

ID No., Net weight

1997, 10, 1	12:30
ID 11, Net:	50.0 kg
ID 12, Net:	100.0 kg
ID 19. Net:	200.5 kg

【 Output Form 1 】 Date, Time

Weigh No., Net weight

1997. 10. 1	12:30
No.10	$50.0 \mathrm{kg}$
No.11	100.0 kg
No.12	200.5 kg

[Output Form 3]

Date, Time Time, Net weight

1997. 10. 1	12:30
10:10, Net:	100.0 kg
11:00, Net:	200.0 kg
12:30, Net:	200.0 kg
13:45, Net:	100.0 kg
15:20, Net:	200.0 kg
17:45, Net:	500.0 kg

【 Output Form 5 】 Date, Time

Serial No., Net weight

1997. 10. 1	10:30
001, 1997. 10. 1	1000.0 kg
1997. 10. 1	15:20
002,	2000.0 kg

SERIAL INTERFACE

F07

Function	Baud rate set			
_	Example LED	Meaning	Example FIP	Meaning
Set value (from 0 to 3)	0	2400 bps	2	9600 bps
()))	1	4800 bps	3	19200 bps

F08

Function	Data set sent to computer		
	Example LED	Meaning	
	0	No data output	
Set value (0 - 3)	1	Transmission in an state of stable & unstable	
(5 5)	2	Transmission only in stable state	
	3	Transmission only when requiring data	

Note 1. The default value is set to 0 at factory. Note 2. when F08 is set to 3, the command of transmission is the byte which is specified in F09.

F09

Function	Device number (Identification number of each indicator)		
	Example VFD	Meaning	
Set value (from 00 to 99)	00	Device No. 00	
(05	Device No. 05	

Note 1. This device number is the data demanding signal in serial communication.

14. MAIN USAGE OF EXP-2000A

(1) HOLD FUNCTION

AUTO HOLD FUNCTION

Press HOLD key when display shows '0'. 'AH-on' will displayed and blinking. In case of weighing moving thing, "HoLd" will appear after the weight is stable. After that, mean value will be displayed.

When you need to turn manual hold mode from the automatic hold mode, press HOLD key when the display shows "0"

MANUAL HOLD FUNCTION

Press HOLD key after weighing moving things. "HoLd" message sill appear and little while after mean value would be displayed.

To delete hold value, return to the normal mode by pressing HOLD key again. Manual hold is automatically cancel When the display shows "0"

(2) TARE WEIGHT DEDUCTION

In case you don't know the tare weight

	· S					
	LED DISPLAY or KEY	ON PLATFORM	DESCRIPTION			
STEP 1	WEIGHTkg 500.0 st NET TARE ZERO	Container	Tare weight (Container) : 500.0 kg			
STEP 2	TARE KEY					
STEP 3	WEIGHT kg I I I I I I I I I I I I I I I I I I I	Container	The indicator memorize the tare weight.			
STEP 4	WEIGHTkg // 300.0 ST NET TARE ZERO	Container + Content	Article weight : 1300.0 kg Net weight is displayed now			
STEP 5	G/N KEY					
STEP 6	WEIGHT kg / BOO.D st NET TARE ZERO	Container + Content	Gross weight : 1800.0 kg			

In case you know the tare weight

	LED DISPLAY or KEY	ON PLATFORM	DESCRIPTION
STEP 1	WEIGHTkg \$\int_{\text{.0}}\$ st net tare \text{ tare zero}	Empty	
STEP 2	WEIGHT kg / BDD.D ST NET TARE ZERO	Container + Content	You know that tare weight is 500.0 kg Weight of article only?
STEP 3	K.T KEY		Type tare weight
STEP 4	WEIGHTkg 500.0 ST NET TARE ZERO	Container + Content	5→0→0
STEP 5	SET KEY		
STEP 6	WEIGHTkg / 3 0 0 0	Container + Content	Article weight is 1300 kg Net weight is displayed now. The indicator memorize the tare weight.

Clear tare weight.

	LED DISPLAY or KEY	ON PLATFORM	DESCRIPTION
STEP 1	WEIGHT kg I	Container	Tare Weight was memorized before. Assume that Tare Weight is 100.0 kg
STEP 2	WEIGHT kg - / / / / / / / / / / / / / / / / / /	Empty	The memorized tare weight is on the display.
STEP 3	TARE KEY		
STEP 4	WEIGHT kg G, G ST NET TARE ZERO	Empty	Tare weight is initaized to "0.0"

(3) PRINT FUNCTION

Sub total print

Used to print total weight of previously weighed result by ID number.

(6/ID KEY ID SET KEY 4/SUM KEY)

for example, let's assume that the current specified ID number is 5. the print form is as belows.

SUB TOTAL

DATE: 1997. 9. 25
TIME: 09:30
CODE: 3
COUNT: 5
TOTAL: 350.0 kg

After printing is done, the total weight and count corresponding to the ${\rm ID}$ number is initialized to 0.

Overall total print

Used to print total weight regardless of ID number. the print form is as belows.

OVERALL-TOTAL

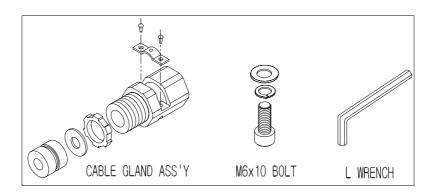
DATE: 1997. 9. 25

TIME: 16:30

COUNT: 25

TOTAL: 750.0 kg

After printing is done, the total weight and count remains. If you want to initialize them, press this key and then 'CLR' key.


Initialization of number measured daily

/CLR "CLEAr" /CLR 1

('0' and '1' are alternately displayed pressing the numerical keys.)

15. ACCESSORY

NAME	QUANTITY
1. CABLE GLAND ASS'Y (PF 1/2")	1 EA
2. Bolt (M6×10)	4 EA
3. L Type wench	1 EA

16. CHECK MESSAGE

(1) Operating Mode

CH 01

Reason

Internal RAM is erased.

Solution

Confirm the setting value in SET Menu.

CH 02

Reason

Load cell connection failure or error in A/D conversion part.

Solution

Check the Load Cell connector to see if the polarity of signal is reversed.

CH 03

Reason

stable to initialize the scale.

Solution

Place the scale on a stable surface.

CH 04

Reason

Zero range deviate from the set range ($\pm 10\%$ of Max.)

Solution

Confirm that there is nothing on the weighting platform.

Over

Reason

The display weight is larger than the Maximum Capacity you've set.

Solution

Don't load the article whose weight is larger than the Max. Capacity on the platform scale. This may damage Load Cell.

(2) Calibration Mode

CH 11

Reason

The resolution is set to be exceeded the limit 1/10,000.

Solution

lower the resolution. modify the allowed weight in CAL1 or modify the division in CAL2 $\,$ so that the resolution should be below 1/10,000.

CH 12

Reason

The weight for span calibration is set to be lower than 10% of the maximum capacity of the scale, or exceeded 100% of the maximum capacity of the scale.

Solution

Set the weight for span calibration to be within the maximum capacity of the scale in CAL1.

CH 13

Reason

Load cell output is too small(large) at SPAN calibration.

Solution

Setting of current resolution is not possible due to the error in load cell. proceed calibration again with less resolution.

CH 14

Reason

Load cell output is too small(large) at ZERO calibration.

Solution

Check whether the ;platform empty.

Proceed calibration again after checking in A/D TEST mode.

MEMO

9007-E20-0033-0 2007.01