

CA-IF428x Home Bus System (HBS) Compatible Transceiver

1. Features

• Configurability Enables Flexible Design

- 9.6kbps to 200kbps Data Rate
- Adjustable Receiver Thresholds and Internal Threshold Configuration Option
- Large Receiver Hysteresis
- Adjustable Slew Rate on Transmit Signals
- Dynamic Cable Termination Improves Signal Quality for High-Speed Communication
- Support Bus Polarity Detection (CA-IF4289 only)

• Integrated Protection for Robust Communication

- IEC 61000-4-2 ±8kV Contact and ±15kV Air-Gap ESD Protection
- IEC 61000-4-5 ±1kV Surge Protection with Selected External Components
- Compact 4mm*4mm QFN Package
- Operation temperature range from -40°C to +105°C

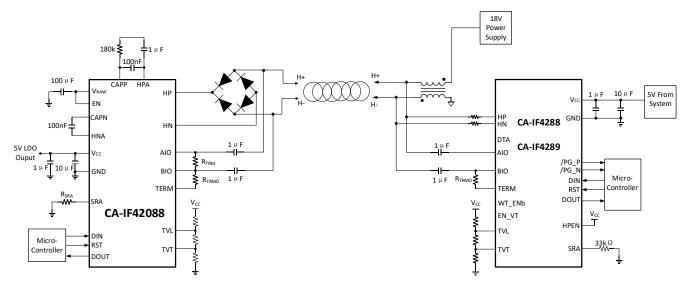
2. Applications

- HVAC
- Data over Power Applications (PoD)
- Digital Signage
- Industrial PLC
- Remote Monitoring and Sensing

3. General Description

The CA-IF428x family of devices complies with the home bus standard requirements while improving communication in harsh environments and minimizing the need for external components. The home bus standard

was designed to ease communication between multiple different devices connected to a single bus, where data and power are passed on one single pair of wires, to allow a mutual exchange of information at any time from any room in a home or building among various appliances, equipment, or security devices.


The CA-IF428x family is configurable to operate up to 200kbps with adjustable receiver thresholds and dynamic cable termination for improved communication with high data rates. This family of devices is rated for operation up to ±8kV contact discharge and ±15kV air gap ESD protection, and survives up to ±1kV surge events with selected external components. Additional features include adjustable receiver hysteresis and driver slew rate. Also, the CA-IF4289 features bus polarity detection, help to prevent incorrect bus connections. The CA-IF428x devices have been designed for operation in home bus systems but they are not only limited to those networks, can be used to transmit data over any compatible system.

All devices are specified over the -40°C to +105°C operating temperature range and are available in a compact 24-pin 4mm*4mm QFN package.

DEVICE INFORMATION

Part Number	Package	Package Size
CA-IF4288	QFN	4mm*4mm
CA-IF4289	QFN	4mm*4mm

Simplified Home Bus System (HBS)

4. Ordering Information

Table 4-1. Ordering Information

Part Number	Temperature Range	Package
CA-IF4288	-40°C to +105°C	QFN-24 4mm*4mm
CA-IF4289	-40°C to +105°C	QFN-24 4mm*4mm

Contents

1.		Featu	ıres	1
2.		Appli	ications	1
3.		Gene	eral Description	1
4.		Orde	ring Information	2
5.			sion History	
6.			onfiguration	
7.			ifications	
	7.1.	-	solute Maximum Ratings ¹	
	7.2.	ESE	O Rating	6
	7.3.	Red	commended Operating Conditions	6
	7.4.	The	ermal Information	6
	7.5.	Ele	ctrical Characteristics	7
	7	.5.1.	DC characteristics(V _{CC})	7
	7	'.5.2.	DC characteristics /Transmit Channel	7
	7	.5.3.	DC characteristics / Receive Channel	7
	7	.5.4.	DC characteristics/Digital I/O	7
	7	'.5.5.	AC characteristics/Transmit channel	8
	7	'.5.6.	AC characteristics/Receive channel	8
	7	'.5.7.	Bus polarity detection ¹	8
	7.6.	Typ	oical Characteristics and Waveforms	9

8.		Paran	neter Measurement Information	10
9.		Detai	led Description	11
	9.1.		nsceiver Operation	
	9.2.	Trai	nsmitter Control and Configuration	13
	g).2.1.	Dynamic Cable Termination	13
	g).2.2.	Transmit Slew Rate Adjustment	14
	g	.2.3.	RST (Reset) Control	14
	g	0.2.4.	Data Input Timeout Detection	14
	9.3.	Rec	eiver Control and Configuration	14
	g	9.3.1.	Receiver Threshold Adjustment	14
	g	9.3.2.	High-Pass Filter	15
	9.4.	Bus	Polarity Detection	15
10.		Appli	cation and Implementation	15
	10.1.	Sur	ge Protection	15
	10.1.	PCE	B Layout Recommendations	15
11.		Packa	ge Information	18
12.		Solde	ring Temperature (reflow) Profile	19
13.		Tape	and Reel Information	20
14		-	RTANT NOTICE	

5. Revision History

Revision Number	Description	Page Changed
Version 1.00	N/A	N/A
Version 1.01	Changed CA-IF4288 pin 20 definition, HPEN to NC.	4, 6, 7, 14, 16
	Added Soldering Temperature Profile and Tape and Reel Information section.	19, 20
Version 1.02	2. Changed HBM ESD rating from ±4kV to ±6kV.	6
	3. Changed package name to QFN.	1, 2, 18, 19, 20

6. Pin Configuration

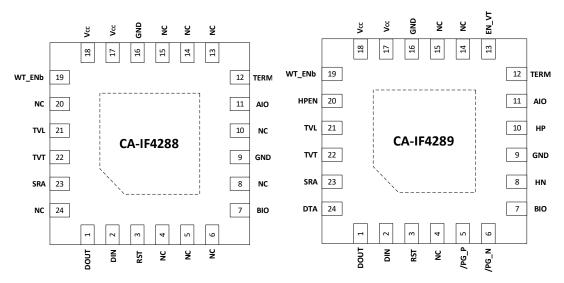


Figure 6-1. CA-IF4288 / 4289 Pin Configuration

Table 6-1. CA-IF4288/ 4289 Pin Description

NAME	PIN NUMBER		TYPE	DESCRIPTION
IVAIVIE	CA-IF4288	CA-IF4289	TIPE	DESCRIPTION
DOUT	1	1	LOGIC I/O	Data output, open-drain output. Connect an external pull-up
		_	,	resistor to the logic voltage supply.
DIN	2	2	LOGIC I/O	Data input.
RST	3	3	LOGIC I/O	Bus reset control input.
N.C.	4,5,6,8,10,13,14,15,20,24	4,14,15	-	Not connected.
/PG_P	-	5	LOGIC I/O	Open-drain output, active low when bus polarity is positive $(V_{HP}-V_{HN}>3V)$.
/PG_N	-	6	LOGIC I/O	Open-drain output, active low when bus polarity is negative $(V_{HN}-V_{HP}>3V)$.
ВІО	7	7	HOME BUS	Home bus data input and output. Connect BIO to home bus through a $1\mu F$ capacitor in series with a 4.7Ω resistor for 57.6kbps operation.
HN	-	8	HOME BUS	Home bus interface. Connect a 200 Ω resistor between HN and home bus for surge protection.
GND	9, 16	9, 16	GND	Ground.
НР		10	HOME	Home bus interface. Connect a 200Ω resistor between HN
ПР	-	10	BUS	and home bus for surge protection.
AIO	11	11	HOME BUS	Home bus data input and output. Connect BIO to home bus through an external 1 μ F capacitor in series with a 4.7 Ω resistor for 57.6kbps operation.
TERM	12	12	HOME BUS	Switched bus termination. Connect a resistor between TERM and BIO to adjust home bus cable termination for better signal quality.
EN_VT	-	13	LOGIC I/O	Enable control for internal threshold configuration, active high. Connect EN_VT to GND through an $1M\Omega$ pull-down resistor. Leave the pin floating to disable internal threshold configuration.
V _{cc}	17, 18	17, 18	POWER	Power supply input. Connect +5V to V_{CC} , and bypass V_{CC} to GND with at least 1 μ F ceramic capacitor as close to the device as possible.

NAME	PIN NUMBER		TYPE	DESCRIPTION		
NAIVIE	CA-IF4288	CA-IF4289	ITPE	DESCRIPTION		
WT_ENb	19	19	LOGIC I/O	Enable control for data input timeout protection, active low. Connect WT_ENb to GND through an 180k Ω pull-down resistor. Leave the pin floating to disable timeout detection.		
HPEN	1	20	LOGIC	High pass filter enable input. Connect HPEN to V_{CC} to enable the internal high pass filter on the receiver input. Connect HPEN to GND to disable the internal high pass filter. Do not leave HPEN open.		
TVL	21	21	HOME BUS	Leading edge data threshold, see the Receiver Threshold Adjustment section for more information.		
TVT	22	22	HOME BUS	Trailing edge data threshold, see the Receiver Threshold Adjustment section for more information.		
SRA	23	23	LOGIC	Slew rate control input. Connect SRA to GND through a resistor to adjust the slew rate of AIO and BIO data output edges.		
DTA	-	24	LOGIC	Dynamic termination time adjustment. For the CA-IF4289, Connect DTA to GND through a $10k\Omega$ to $500k\Omega$ resistor to adjust the dynamic termination turn on time; Leave DTA floating, the dynamic termination time is default of 34μ s. For the CA-IF4288, the termination time is fixed at 34μ s.		
EP	-	-	-	Exposed pad, connect to Ground.		

7. Specifications

7.1. Absolute Maximum Ratings¹

PARAMETERS	MIN	MAX	UNITS
VCC to GND	-0.3	6.0	V
AIO, BIO, TERM, SRA to GND	-0.3	Vcc+0.3	V
HP, HN to GND	-0.3	+28	V
HP to HN and HN to HP	-28	+28	
Continuous current into pins of V _{CC} , AIO, BIO, TERM	-100	+100	mA
Continuous current into all other pins	-50	+50	mA
Operating Temperature Range	-40	+105	°C
Junction Temperature		+150	°C
Storage Temperature Range	-40	+150	°C
Soldering Temperature (reflow)		+260	°C

Note:

7.2. ESD Rating

			VALUE	UNITS
V _{ESD} Electros dischar		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, AIO,BIO to GND.	±30	kV
	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all other pins.	±6	kV
	discharge	IEC 61000-4-2 air discharge, AIO,BIO,TERM to GND	±15	kV
		IEC 61000-4-2 contact discharge, Electrostatic discharge	±8	kV
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins.	±2	kV

7.3. Recommended Operating Conditions

	PARAMETERS	MIN	TYP	MAX	UNITS
Vcc		4.5		5.5	V
VTVT			1.5		V
VTVL			2.5		V
RSRA			33k		Ohm
T _A	Ambient temperature	-40	25	105	°C
Tı	Junction temperature			150	°C

7.4. Thermal Information

PARAMETERS		QFN	UNITS
$R_{\theta JA}$	IC Junction-to-Ambient Thermal Resistance	52	°C/W

^{1.} The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.

7.5. Electrical Characteristics

Over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 105°C (unless otherwise noted).

7.5.1. DC characteristics(V_{CC})

Symbol	Parameter	Test Conditions	MIN	TYP	MAX	Units
V _{CC}	Power supply voltage		4.5	5.0	5.5	V
Icc	Supply current	Vcc=5.0V, no loading, 57.6kbps, C _L =0pF		1.7	2.5	mA
Vuv	V _{CC} undervoltage lockout	V _{CC} voltage falling	4.0	4.2	4.4	V
VUV_hys	V _{CC} undervoltage lockout hysteresis			100		mV

7.5.2. DC characteristics /Transmit Channel

Symbol	Parameter	Test Conditions	TYP	MAX	UNITS	
V _{TOH}	Output voltage high	AIO, BIO to GND, Iload=45mA to GND	Vcc-0.6			V
V _{TOL}	Output voltage low	AIO, BIO to GND, Iload=45mA to V _{CC}		0.6	V	
R _{TERM}	Termination switch on resistance	TERM to AIO	2.5 5		10	Ohm
R _{IN}	AIO,BIO transmit input resistance	Input resistance of AIO and BIO when they are unconnected, DIN=V _{CC}	O when they are 7 10		13	ΚΩ
V _{AIO} / V _{BIO}	Bias voltage ratio matching	AIO, BIO unconnected	-1		+1	%

7.5.3. DC characteristics / Receive Channel

Symbol	Parameter	Conditions	MIN	TYP	MAX	UNITS
V_{LEAD}	Receive threshold leading edge	V_{TVL} = 1.0V, /HPEN = V_{CC}	0.85	1	1.15	V
V_{TRAIL}	Receive threshold trailing edge	$V_{TVT} = 0.5V$, /HPEN = V_{CC}	0.35	0.5	0.65	V
V_{TVL}	Internal high-level threshold configuration	EN_VT= high	1.8	2	2.2	V
V _{TVT}	Internal low-level threshold configuration	EN_VT= high	1.3	1.5	1.7	V
I _{THLEAK}	TVL, TVT input leakage current	$V_{TVL} = V_{TVT} = 2.5V$	-1		+1	μΑ

7.5.4. DC characteristics/Digital I/O

(DIN, DOUT, RST, /PG_P, /PG_N, EN_VT, WT_ENb, HPEN)

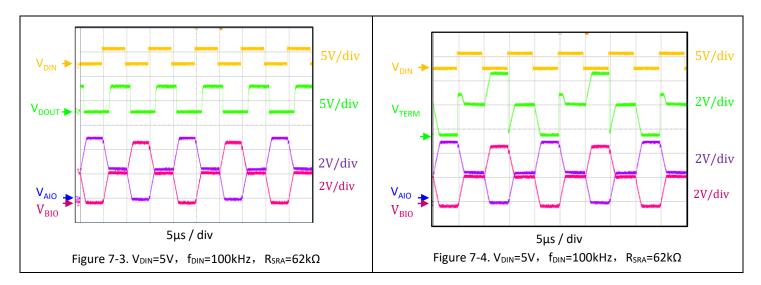
Symbol	Parameter	Conditions	MIN	TYP M	ΑX	UNITS
V _{IH}	Input logic-high		1.4			V
V _{IL}	Input logic-low			0.	4	٧
I _{LEAK}	Input leakage current		-1	+	1	μΑ
V _{OL}	Open-drain logic-low	I _{SINK} =2mA		0.:	3	V
V _{ODL}	Open-drain leakage	V _{OUT} = 5V, output not asserted			1	μΑ

7.5.5. AC characteristics/Transmit channel

Symbol	Parameter	Conditions	MIN	TYP	MAX	UNITS
t _{RLD}	Output rise time leading edge	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω		1.4		μs
t _{FLD}	Output fall time leading edge	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω		1.4		μs
t _{RTR}	Output rise time trailing edge	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω		1.4		μs
t _{FTR}	Output fall time trailing edge	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω		1.4		μs
t _{TPROP}	Transmit propagation delay	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω		1.2		μs
t _{SYM}	Transmission output symmetry	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω	-0.4	0	+0.4	μs
t _{TERM}	Termination switching delay	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω		0.5		μs
t _{TRMON}	Termination on-time (default)	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω , DTA is floating	19	34	63	μs
t _{TRMON_min}	Minimum value of termination on-time	R_{SRA} = 62k Ω , R_{LOAD} =200 Ω , connect DTA to GND	0	10	12	116
	(external adjustment)	through an 10k resistor.	8 10		12	μs
t _{TRMON_max}	Maximum value of termination on-time	R_{SRA} = $62k\Omega$, R_{LOAD} = 200Ω , connect DTA to GND	400	500	600	110
	(external adjustment)	through a 500k resistor.	400	300	300	μs

7.5.6. AC characteristics/Receive channel


Symbol	Parameter	Conditions	MIN	TYP	MAX	Units
t _{RPROP}	Receive propagation delay	HPEN = V _{CC}			1	μs
t _{HP}	Receiver high pass filter time constant	HPEN = V _{CC}		500		μs


7.5.7. Bus polarity detection¹

Symbol	Parameter	Conditions	MIN	TYP	MAX	Units					
V_{HIGH}	Bus polarity detection: logic high	V_{HP} - V_{HN} , /PG_P = low	2.5	3	3.5	V					
V_{LOW}	Bus polarity detection: logic low	$V_{HN}-V_{HP}$, $/PG_N = Iow$	2.5	3	3.5	V					
Note:	Note:										
1. The CA	-IF4289 features bus polarity detection	only.									

7.6. Typical Characteristics and Waveforms

8. Parameter Measurement Information

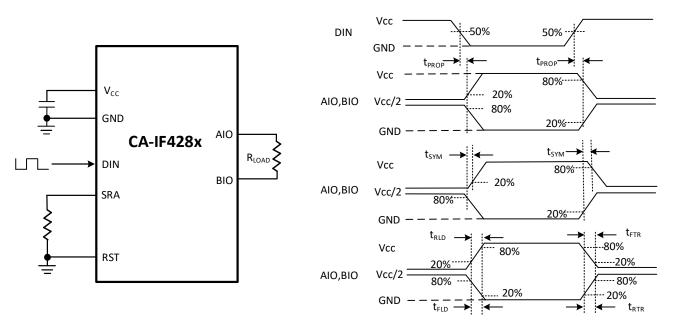


Figure 8-1. Transmit Channel Timing Diagram

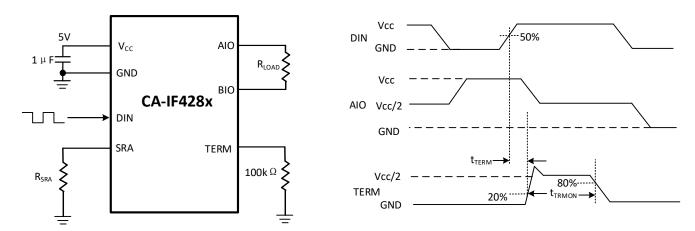


Figure 8-2. Transmission Switch Delay and Termination On-Time

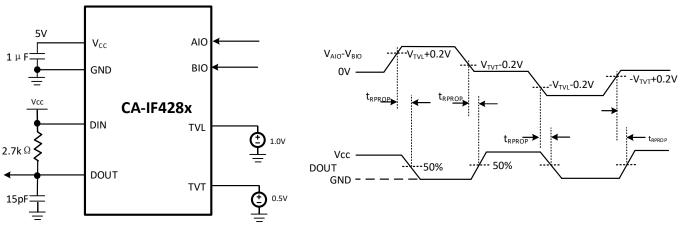


Figure 8-3. Receive Propagation Delay

9. Detailed Description

The CA-IF428x home bus transceiver complies with the home bus standard, where power and data are carried on a single pair of wires. All devices can operate with data rates up to 200kbps for bus-powered applications and feature dynamic cable termination, programmable receiver hysteresis and thresholds, and transmit driver slew rate adjustment for better signal quality and flexible design. See Figure 9-1 and Figure 9-2 functional block diagram for the CA-IF4288 and the CA-IF4289.

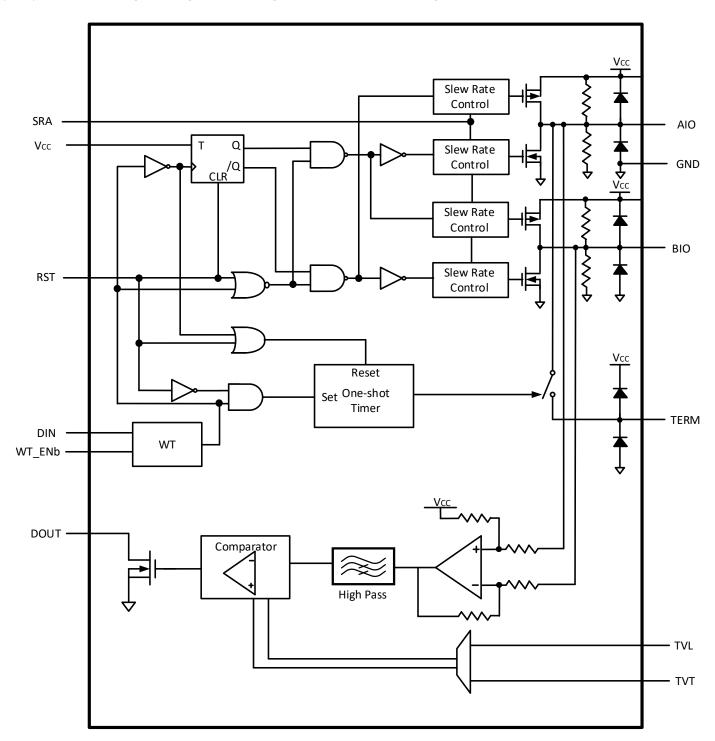


Figure 9-1. The CA-IF4288 Functional Block Diagram

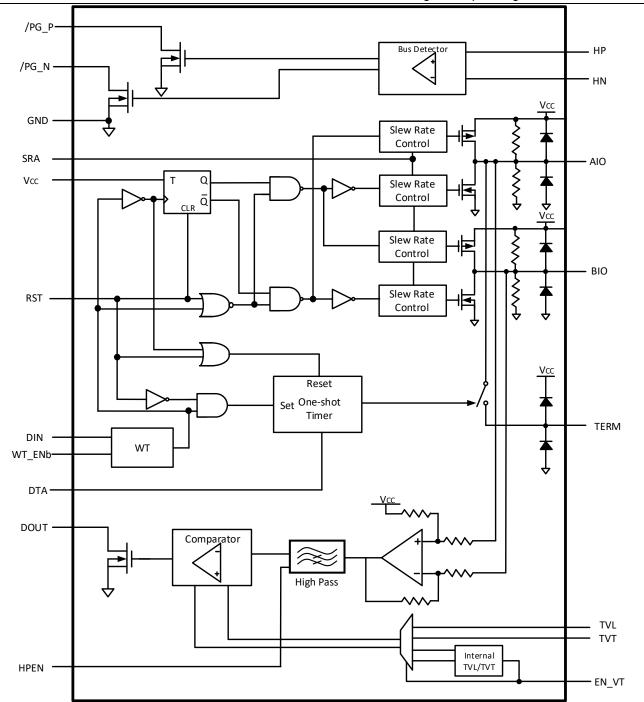


Figure 9-2. The CA-IF4289 Functional Block Diagram

9.1. Transceiver Operation

On the logic side, the CA-IF428x home bus transceivers have logic data input (DIN) and logic data output (DOUT); The reset control RST is used to enable or disable the bus transmitter: drive RST low to enable data transmission on AIO and BIO; drive RST high to disable the bus transmitter. The CA-IF428x home bus receiver is always active. In the typical applications, DIN, DOUT and RST logic pins are the interface with external micro-controller. Also, these devices feature an internal watchdog timer to avoid the bus being blocked by a long-zero. The timer is enabled by setting the logic input WT_ENb to low. The internal watchdog timer monitors the logic input DIN and if any long-zero input persists for more than the watchdog timeout and blocks the bus, sets the AIO and BIO outputs to high-impedance states. Any transition resets the watchdog timer.

On the bus side, AIO, BIO, and TERM connected to the home bus network. When DIN goes from high to low, the polarities of AIO and BIO invert; When DIN goes from low to high, put AIO and BIO pins to high-impedance. DOUT asserts low when the leading edge of V_{AIO} - V_{BIO} crosses V_{TVL} or - V_{TVL} ; DOUT is high-impedance when the trailing edge of V_{AIO} - V_{BIO} crosses V_{TVT} or - V_{TVT} . See more details from Figure 9-3.

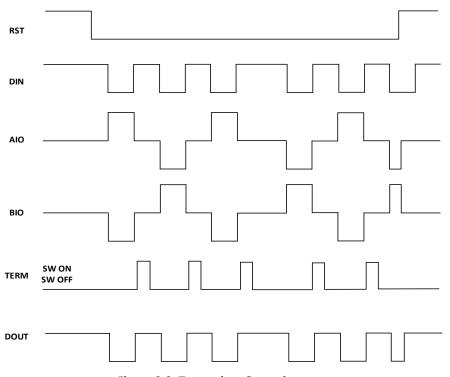


Figure 9-3. Transceiver Operation

9.2. Transmitter Control and Configuration

9.2.1. Dynamic Cable Termination

The CA-IF428x supports home bus signals at data rates up to 200kbps. When operating at high data rates, the mismatch between the home bus cable impedance and cable termination resistor can affect the signal transmission quality negatively. We recommend to connect a 200 Ω to 1k Ω cable termination resistor(R_{TRM} in the typical application circuit) between AIO and BIO, and connect a resistor (100 Ω , typ) between TERM and BIO (R_{TRMO} in the typical application circuit), to absorb reflections on the bus. The CA-IF428x features dynamic cable termination to improve the signal quality for long distance transmission. When the driver transitions to high-impedance, an internal switch connects AIO to TERM and the external termination resistor(R_{TRMO}) at TERM is connected between AIO and BIO in parallel with the cable termination resistor(R_{TRM}). When DOUT asserts low, or when RST is driven high, the internal switch opens after 34 μ s (typ) fixed time for the CA-IF4288; For the CA-IF4289, the internal termination switch opens after 34 μ s with DTA pin floating, or opens after 10 μ s to 500 μ s with 10k Ω to 500k Ω of R_{DTA}, the external resistor connected between DTA and GND. Termination on-time calculation is as below equation:

$$t_{DTA} = R_{DTA} / 1k\Omega$$

Where R_{DTA} is in $k\Omega$, t_{DTA} is in μ s. When operating at lower data rate, we recommend to select larger R_{DTA} , for example, $120k\Omega$ to $200k\Omega$ R_{DTA} at 9.6kbps data rate. Also, select a larger termination resistor between AIO and BIO, R_{TRM} and increase the receiver threshold hysteresis when operating at low-speed transmission to reduce power consumption and improve system reliability. The optimized value of the dynamic termination resistor depends on the application. For typical applications, the value of the dynamic termination resistor is between 50Ω and 240Ω .

9.2.2. Transmit Slew Rate Adjustment

Connect resistor R_{SRA} between SRA and GND to control the slew rate of the transmit signals (AIO and BIO). The transmit rise (t_{RLD} , t_{RTR})/fall time (t_{FLD} , t_{FTR}) is proportional to R_{SRA} and is calculated using the following equation:

$$t_{rise/fall} = 17(pF) \times R_{SRA}(\Omega)$$

For most applications, it is recommended to use R_{SRA} = 33k Ω resulting in 0.56 μ s (typ) output rise/fall time. Ensure that R_{SRA} is in the range from 20k Ω to 120k Ω .

9.2.3. RST (Reset) Control

The CA-IF428x family devices feature a bus reset control input. Drive RST low to enable the bus transmitter. Drive RST high to disable the bus transmitter. RST also controls the internal switch used for dynamic cable termination. Ensure that RST remains low for at least $34\mu s$ (typ) after the internal switch is closed when the driver transitions to high-impedance. The internal switch opens when put RST high.

9.2.4. Data Input Timeout Detection

The CA-IF428x devices feature logic data input timeout detection that prevents erroneous controllers from clamping the bus to a low level by maintaining a continuous low input signal. Connect WT_ENb pin to low to enable timeout detection. In this case, when data input DIN remains in the low for greater than 21ms(typ), the transmitter is disabled that places the driver outputs (AIO/BIO) in a high-impedance state. To disable timeout detection, connect WT_ENb to logic high.

9.3. Receiver Control and Configuration

9.3.1. Receiver Threshold Adjustment

The threshold levels of receiving signals are set by the voltages at TVL and TVT. The voltage at TVL sets the threshold for the pulse leading edge of receiving signals from the home bus($V_{AIO} - V_{BIO}$). The voltage at TVT sets the threshold for the pulse trailing edge of receiving signals from home bus. Ensure that $V_{TVL} > V_{TVT}$. DOUT asserts low when $V_{AIO} - V_{BIO}$ crosses V_{TVL} or $-V_{TVL}$. DOUT is high impedance when $V_{AIO} - V_{BIO}$ crosses V_{TVT} or $-V_{TVT}$, see Figure 9-4. Receiver Thresholds. Connect a pull-up resistor between DOUT and the logic supply.

The CA-IF4289 provides internal threshold voltage configuration. Connect EN_VT to logic high, the threshold levels for the receiving signals are set internally, the default threshold voltage is V_{TVL} =2V and V_{TVT} =1.5V. Connect EN_VT to logic low, the threshold levels are set externally (see the typical application circuit), dependent on the voltage at pin TVL and TVT.

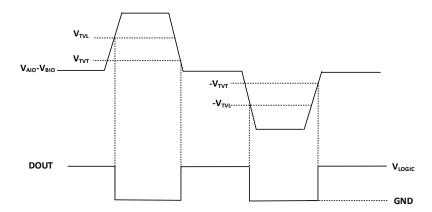


Figure 9-4. Receiver Thresholds

9.3.2. High-Pass Filter

The CA-IF428x home bus transceivers have an internal high-pass filter on the receiver input to filter out the low frequency noise at AIO and BIO. The CA-IF4289 features high-pass filter enable control HPEN, connect HPEN to V_{CC} to enable the internal high-pass filter on the receiver input; Connect HPEN to GND to disable the internal high pass filter. In any cases, don't leave the pin HPEN open. The CA-IF4288 doesn't have enable control HPEN, it's internal high-pass filter is always enabled.

9.4. Bus Polarity Detection

The CA-IF4289 device offers bus polarity detection that prevents wrong cable connection on the bus. When V_{HP} - V_{HN} is greater than 3V (typ), /PG_P asserts to low level, indicates the bus polarity is positive; When V_{HN} - V_{HP} is greater than 3V (typ), /PG_N asserts to low level, indicates that the bus polarity is negative. When the bus is not powered, both /PG_P and /PG_N assert to logic high via external pull-up resistors. Connect a 200 Ω resistor between home bus and HP/HN pins for surge protection.

10. Application and Implementation

In the home bus standard, power and data are carried on a single pair of wires. The CA-IF428x family is powered by +5V system supply voltage at V_{CC} . An external AC-blocking inductor is required to superimpose the data on the home bus cable or to separate data from home bus cable, see Figure 10-1 to Figure 10-3 typical application circuits for the CA-IF4289 and the CA-IF4288.

10.1. Surge Protection

External components are required to protect the CA-IF428x home bus pins (HP, HN, AIO, BIO and TERM) from high voltage transient events (see Figure 10-1 to Figure 10-3). AIO, BIO and TERM must be protected with external TVS diodes and resistors from surge transients. Connect TVS diodes with a 5.8V maximum voltage rating from AIO to GND and BIO to GND, respectively. Connect a 4.7Ω serial resistor between each TVS diode and AIO/BIO to limit the surge current. Depending on the surge transients polarities, the residual current after the 4.7Ω resistor flows from AIO/BIO through the internal ESD clamping diodes to V_{CC} or GND.

Connect a 200Ω resistor between the bus and HP, HN pins respectively for surge protection. Connect at least $1\mu F$ ceramic bypass capacitor as close to V_{CC} pin as possible, and a minimum $10\mu F$ bulk capacitor between V_{CC} and GND to limit the voltage overshoot on V_{CC} pin.

10.1. PCB Layout Recommendations

Although impedance matching is not required on H+ and H- lines, route them together as much as possible. To reduce the parasitic capacitance on signal lines, do not route H+ and H- lines, or the connected components over the ground planes. To ensure proper protection, connect the ground return of the protection diodes directly to the ground plane. Use a star configuration to connect all grounds together as close to the GND as possible. Place the external protection components, TVS diodes and the diode bridge, as close to the home bus connector as possible.

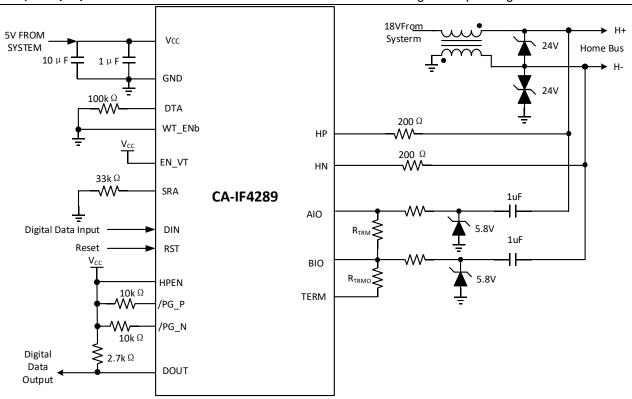


Figure 10-1. The CA-IF4289 Typical Application Circuit with Internal Threshold Setup (connect EN_VT to Vcc)

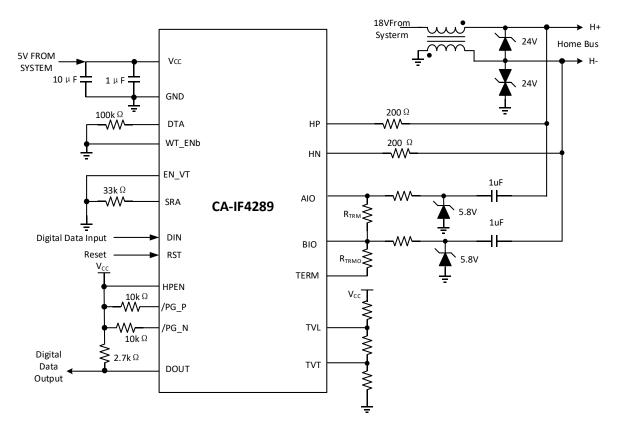


Figure 10-2. The CA-IF4289Typical Application Circuit with External Threshold Setup(connect EN_VT to GND)

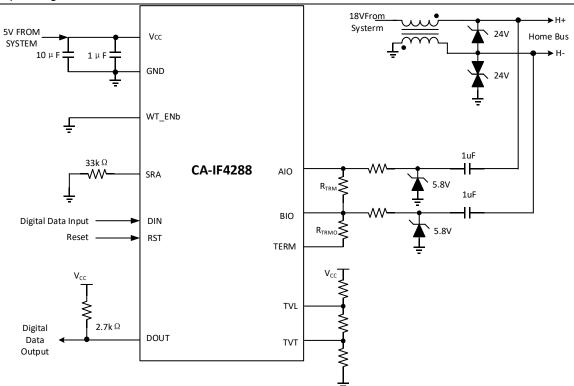
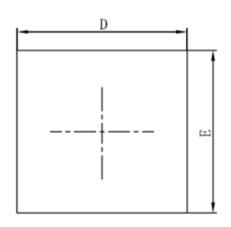
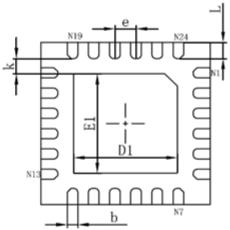
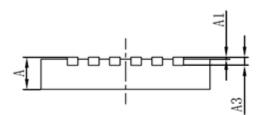




Figure 10-3. The CA-IF4288 Typical Application Circuit


11. Package Information

QFN package outline

TOP VIEW

SIDE VIEW

L	_	b	_	N

BOTTOM VIEW

Sambal	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
Α	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.203	REF.	0.008REF.			
D	3.950	4.050	0.156	0.159		
E	3.950	4.050	0.156	0.159		
E1	2.400	2.500	0.094	0.098		
D1	2.400	2.500	0.094	0.098		
k	0.20	OMIN	0.00	8MIN		
b	0.200	0.300	0.008	0.012		
е	0.500	TYP.	0.020	TYP.		
1	0.350	0.450	0.014	0.018		

Note:

1. All dimensions are in millimeters, angles are in degrees.

Figure 11-1. QFN packaging Information

12. Soldering Temperature (reflow) Profile

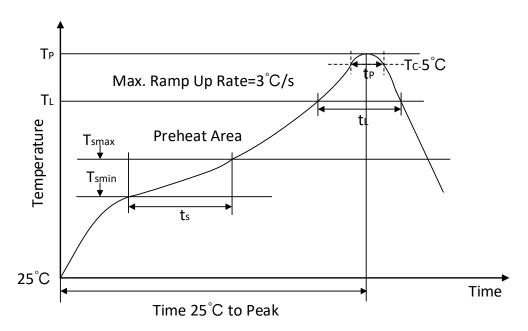
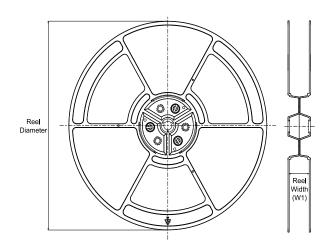
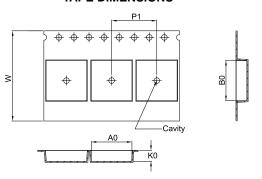


Figure 12-1. Soldering Temperature (reflow) Profile

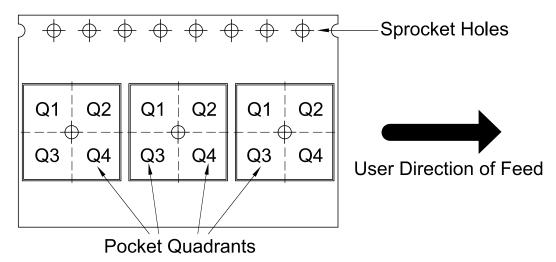

Table 12-1. Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly	Pb-Free Assembly					
Average ramp-up rate(217 $^{\circ}\mathrm{C}$ to Peak)	3℃/second max						
Time of Preheat temp(from 150 $^{\circ}{\mathbb C}$ to 200 $^{\circ}{\mathbb C}$	60-120 second						
Time to be maintained above 217 $^{\circ}\mathrm{C}$	60-150 second						
Peak temperature	260 +5/-0 °C						
Time within 5 ℃of actual peak temp	30 second						
Ramp-down rate	6 °C/second max.						
Time from 25 ℃ to peak temp	8 minutes max						



13. Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IF4288	QFN	F	24	3000	330	12.4	4.3	4.3	1.1	8.0	12.0	Q1
CA-IF4289	QFN	F	24	3000	330	12.4	4.3	4.3	1.1	8.0	12.0	Q1

14. IMPORTANT NOTICE

The above information is for reference only and is used to assist Chipanalog customers in design and development. Chipanalog reserves the right to change the above information due to technological innovation without prior notice.

Chipanalog products are all factory tested. The customers shall be responsible for self-assessment and determine whether it is applicable for their specific application. Chipanalog's authorization to use the resources is limited to the development of related applications that the Chipanalog products involved in. In addition, the resources shall not be copied or displayed. And Chipanalog shall not be liable for any claim, cost, and loss arising from the use of the resources.

Trademark Information

Chipanalog Inc. ®, Chipanalog® are trademarks or registered trademarks of Chipanalog.

http://www.chipanalog.com