

CA-IS3821 High-Performance Reinforced Dual-Channel Digital Isolators

1. Key Features

Signal Rate: DC to 150Mbps

Wide Operating Supply Voltage: 2.5V to 5.5V

Wide Operating Temperature Range: -40°C to 125°C

• No Start-Up Initialization Required

Default Output High and Low Options

• High Electromagnetic Immunity

High CMTI: ±150kV/μs (Typical)

Low Power Consumption (Typical):

1.5mA per Channel at 1Mbps with 5.0V Supply

6.6mA per Channel at 100Mbps with 5.0V Supply

Precise Timing (Typical)

12ns Propagation Delay

1ns Pulse Width Distortion

2ns Propagation Delay Skew

5ns Minimum Pulse Width

Isolation Rating up to 5.7kVrms

ESD: ±8kV HBM

• Isolation Barrier Life: >40 Years

Schmitt Trigger Inputs

RoHS-Compliant Packages

SOIC16 Extra Wide Body

2. Applications

• Industrial Automation Systems

Motor Control

Medical Electronics

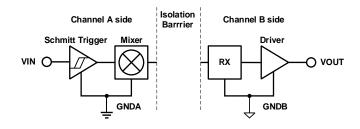
Isolated Switch Mode Supplies

Solar Inverters

Isolated ADC, DAC

3. Description

The CA-IS3821 devices are high-performance dual - channel digital isolators with precise timing characteristics and low power consumption. The CA-IS3821 devices provide high electromagnetic immunity and low emissions, while


isolating CMOS digital I/Os. All device versions have Schmitt trigger input for high noise immunity. Each isolation channel consists of a transmitter and a receiver separated by silicon dioxide (SiO_2) insulation barrier. The CA-IS3821 device has one forward and one reverse-direction channels. All devices have fail-safe mode option. If the input power or signal is lost, default output is low for devices with suffix L and high for devices with suffix H.

CA-IS3821 devices has high insulation capability to handle noise and surge on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. High CMTI ability promises the correct transmission of digital signal. The CA-IS382x devices are available in SOIC16 pin extra wide body. All products support insulation withstanding up to 5.7kVrms.

Device Information

PART NUMBER	PACKAGE	BODY SIZE(NOM)
CA-IS3821	SOIC16- WWB(WW)	10.30 mm × 14.00 mm

Simplified Channel Structure

Channel A side and B side are separated by isolation capacitors. GNDA and GNDB are the isolated ground for signals and supplies of A side and B side respectively.

4. Ordering Guide

Table 4-1 Ordering Guide for Valid Ordering Part Number

Ordering Part Number	Number of Inputs A Side	Number of Inputs B Side	Default Output	Isolation Rating (kV)	Output Enable	Package
CA-IS3821LWW	2	1	Low	5.7	No	SOIC16-WWB
CA-IS3821HWW	2	1	High	5.7	No	SOIC16-WWB

上海川土微电子有限公司

L.	Key Feat	tures	1
2.	Applicat	ions	1
3.	Descript	tion	1
1.	Orderin	g Guide	2
5.	Revision	n History	3
5.	PIN Des	criptions and Functions	4
7.	Specifica	ations	5
	7.1.	Absolute Maximum Ratings ¹	5
	7.2.	ESD Ratings	5
	7.3.	Recommended Operating Conditions	5
	7.4.	Thermal Information	6
	7.5.	Power Rating	6
	7.6.	Insulation Specifications	7
	7.7.	Safety-Related Certifications	8
	7.8.	Electrical Characteristics	9

 $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C..9

 V_{DDA} = V_{DDB} = 3.3 V \pm 10%, T_A = -40°C to 125°C

 V_{DDA} = V_{DDB} = 2.5 V ± 5%, T_A = -40°C to 125°C.9

	7.9	9.2.	$V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%, T_A = -40^{\circ}\text{C to } 1$.25°C
	7.9	9.3.	$V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to 12 10	.5°C
	7.10.	Timi	ng Characteristics	11
	7.1	LO.1.	$V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 12!	5°C11
	7.1	10.2.	$V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 1 11	.25°C
	7.1	10.3.	$V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to 12	.5°C
8.	Paran	neter M	easurement Information	12
9.	Detai	led Des	cription	14
	9.1.	Theo	ory of Operation	14
	9.2.	Fund	tional Block Diagram	14
	9.3.	Devi	ce Operation Modes	15
10.	Į.	Applicati	ion and Implementation	16
11.	F	Package	Information	17
	11.1.	16-P	in Extra Wide Body SOIC Package	17
12.	9	Solderin	g Information	18
13.	1	Tape And	d Reel Information	19
14.			nt Notice	

5. Revision History

7.8.1. 7.8.2.

7.8.3.

7.9.1.

7.9.

Version	Revision history	Page
Version1.01	Remove CA-IS382x parts except CA-IS3821HWW,CA-IS3821LWW	NA

6. PIN Descriptions and Functions

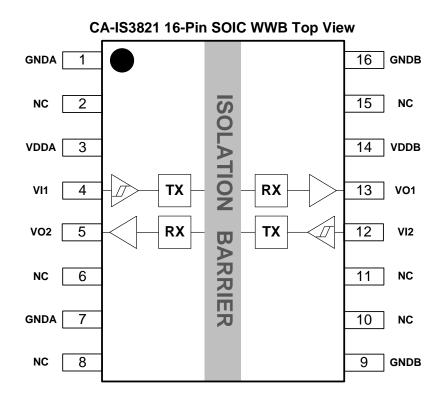


Figure 6-1 CA-IS3821 in 16-Pin SOIC Extra Wide Body Package Top View

Table 5-1 CA-IS3821 in 16-Pin SOIC Extra Wide Body Package Pin Description and Functions

Name	SOIC-16 Pin#	Type	Description
GNDA	1	Ground	Side A Ground
NC	2	No Connect	No Connect
VDDA	3	Supply	Side A Power Supply
VI1	4	Digital I/O	Side A Digital Input for CA-IS3821
VO2	5	Digital I/O	Side A Digital Output for CA-IS3821.
NC	6	No Connect	No Connect
GNDA	7	Ground	Side B Ground
NC	8	No Connect	No Connect
GNDB	9	Ground	Side B Ground
NC	10	No Connect	No Connect
NC	11	No Connect	No Connect
VI2	12	Digital I/O	Side B Digital Input for CA-IS3821
VO1	13	Digital I/O	Side B Digital Output for CA-IS3821
VDDB	14	Supply	Side B Power Supply
NC	15	No Connect	No Connect
GNDB	16	Ground	Side B Ground
Note: 1. No Conne	ect. These pins are r	not internally conne	cted. They can be left floating, tied to VDD or tied to GND

上海川土微电子有限公司

Specifications

7.1. Absolute Maximum Ratings¹

		MIN	MAX	UNIT
V _{DDA} , V _{DDB}	Supply Voltage ²	-0.5	6.0	V
V _{in}	Voltage at Ax, Bx, ENx	-0.5	$V_{DDA} + 0.5^3$	V
l ₀	Output Current	-20	20	mA
T _J	Junction Temperature		150	°C
T _{STG}	Storage Temperature	-65	150	°C

NOTE:

- 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage
- 3. Maximum voltage must not exceed 6 V.

7.2. ESD Ratings

		VALUE	UNIT
V _{ESD} Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, to the Pins on the same side ¹	±8000	V
discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	±2000	V

NOTE:

- JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions 7.3.

			MIN	TYP	MAX	UNIT
V _{DDA} , V _{DDB}	Supply Voltage		2.375	3.3	5.5	V
V _{DD} (UVLO+)	VDD Undervoltage Threshold When Supp	ly Voltage is Rising	1.95	2.24	2.375	V
V _{DD} (UVLO-)	VDD Undervoltage Threshold When Supp	ly Voltage is Falling	1.88	2.10	2.325	V
V _{HYS} (UVLO)	VDD Undervoltage Threshold Hysteresis		70	140	250	mV
		$V_{DDO}^1 = 5V$	-4			
I _{OH}	High-level Output Current	V _{DDO} = 3.3V	-2			mA
		V _{DDO} = 2.5V	-1			1
	Low-level Output Current	V _{DDO} = 5V			4	
I _{OL}		V _{DDO} = 3.3V			2	mA
		V _{DDO} = 2.5V			1	
V _{IH}	High-level Input Voltage		2.0			V
V _{IL}	Low-level Input Voltage				0.8	V
DR	Data Rate		0		150	Mbps
T _A	Ambient Temperature		-40	27	125	°C
NOTE:			•			•

 V_{DDO} = Output-side V_{DD}

7.4. Thermal Information

	THERMAL METRIC	CA-IS3821	UNIT
	THERIVIAL WILLTRIC	ww	ONIT
R _{θJA}	Junction-to-ambient thermal resistance	83.4	°C/W

7.5. Power Rating

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CA-IS38	221					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_L = 15 \text{ pF,}$			120	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			60	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave			60	mW

7.6. Insulation Specifications

上海川土微电子有限公司

	PARAMETR	TEST CONDITIONS	VALUE WW	UNIT
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	>15	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	>15	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	>27	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	V
	Material group	According to IEC 60664-1	I	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 400 V _{RMS}	I-IV	1
		Rated mains voltage ≤ 600 V _{RMS}	I-III	1
DIN V VD	DE V 0884-11:2017-01 ²			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	2828	V _{PK}
V _{IOWM}	Maximum working isolation voltage	AC voltage; Time dependent dielectric breakdown (TDDB) Test	2000	V _{RMS}
	, , , , , , , , , , , , , , , , , , ,	DC voltage	2828	V_{DC}
V _{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} , t = 60 s (qualification); V _{TEST} = 1.2 × V _{IOTM} , t= 1 s (100% production)	8000	V _{PK}
V _{IOSM}	Maximum surge isolation voltage ³	Test method per IEC 60065, 1.2/50 μ s waveform, $V_{\text{TEST}} = 1.6 \times V_{\text{IOSM}}$ (qualification)	8000	V _{PK}
		Method a, After Input/Output safety test subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10$ s	≤5	
q _{pd}	Apparent charge ⁴	Method a, After environmental tests subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10$ s	≤5	pC
		Method b1, At routine test (100% production) and preconditioning (type test) $V_{\text{ini}} = 1.2 \times V_{\text{IOTM}}, t_{\text{ini}} = 1 \text{ s};$ $V_{\text{pd(m)}} = 1.875 \times V_{\text{IORM}}, t_{\text{m}} = 1 \text{ s}$	≤5	-
C _{IO}	Barrier capacitance, input to output ⁵	$V_{10} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	~0.5	pF
	, h	V ₁₀ = 500 V, T _A = 25°C	>1012	
R _{IO}	Isolation resistance ⁵	$V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$	>1011	Ω
		V ₁₀ = 500 V at T _S = 150°C	>109	1
	Pollution degree		2	†
UL 1577	0		1	
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, $t = 60$ s (qualification), $V_{TEST} = 1.2 \times V_{ISO}$, $t = 1$ s (100% production)	5700	V _{RMS}

- Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- 2. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 3. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- 4. Apparent charge is electrical discharge caused by a partial discharge (pd).
- All pins on each side of the barrier tied together creating a two-terminal device.

7.7. Safety-Related Certifications

VDE(Pending)	CSA(Pending)	UL(Pending)	CQC(Pending)	TUV(Pending)
Certified according to DIN	Certified according to IEC	Recognized under UL	Certified according to	Certified according to EN
V VDE V 0884-11:2017-01	60950-1, IEC 62368-1 and	1577 Component	GB4943.1-2011	61010-1:2010 (3rd Ed)
	IEC 60601-1	Recognition Program		and EN 60950-
				1:2006/A2:2013
Maximum transient		SOIC16-WWB: 5700 VRMS		
isolation voltage,				
8000V _{pk} (SOIC16-WWB),				
Certification number:	Certification number:	Certification number:	Certification number:	Certification number:

Electrical Characteristics

上海川土微电子有限公司

7.8.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 7-1	V _{DDO} ¹ -0.4	4.8		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; <i>See Figure 7-1</i>		0.2	0.4	V
V _{IT+(IN)}	Positive-going Input Threshold		2			V
V _{IT-(IN)}	Negative-going Input Threshold				0.8	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at Ax or Bx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at Ax or Bx	-20			μΑ
Zo	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_{I} = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1200$ V; See Figure 7-3	100	150		kV/μS
Cı	Input Capacitance ³	$V_I = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1$ MHz, $V_{DD} = 5$ V		2		pF

NOTE:

- V_{DDI} = Input-side V_{DD} , V_{DDO} = Output-side V_{DD}
- The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%.
- Measured from pin to Ground.

7.8.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 7-1	V _{DDO} ¹ -0.2	3.1		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 7-1		0.2	0.4	V
V _{IT+(IN)}	Positive-going Input Threshold		2			V
V _{IT-(IN)}	Negative-going Input Threshold				0.8	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at Ax or Bx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at Ax or Bx	-20			μΑ
Zo	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DD1}^1$ or 0 V, $V_{CM} = 1200$ V; See Figure 7-3		100	150	kV/μs
Cı	Input Capacitance ³	$V_I = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz},$ $V_{DD} = 3.3 \text{ V}$		2		pF

NOTE:

- V_{DDI} = Input-side $V_{DD,}$ V_{DDO} = Output-side V_{DD} 1.
- The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%.
- Measured from pin to Ground.

7.8.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 7-1	V _{DDO} ¹ -0.4	2.3		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 7-1		0.2	0.4	V
V _{IT+(IN)}	Positive-going Input Threshold		2			V
V _{IT-(IN)}	Negative-going Input Threshold				0.8	V
I _{IH}	High-Level Input Leakage Current	$V_{IH} = V_{DDA}$ at Ax or Bx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at Ax or Bx	-20			μΑ
Zo	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DD1}^1$ or 0 V, $V_{CM} = 1200$ V; See Figure 7-3	100	150		kV/μS
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$,		2		nΕ
		V _{DD} = 2.5 V				pF

- V_{DDI} = Input-side $V_{DD,}V_{DDO}$ = Output-side V_{DD}
- The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%. 2.
- Measured from pin to Ground.

7.9. Supply Current Characteristics

7.9.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

PARAMETER	TEST CONDITION	SUPPLY CURRENT	MIN	ТҮР	MAX	UNIT	
-IS3821							
	V _{IN} = 0V (CA-IS3821L);		I _{DDA}		1.6	3.2	
Supply Curr2.0ent – DC	$V_{IN} = V_{DDI}$ (CA-IS3821H)		I _{DDB}		1.6	3.2	
Signal	$V_{IN} = V_{DDI}$ (CA-IS3821L);		I _{DDA}		2.9	5.8	
	$V_{IN} = OV(CA-IS3821H)$		I _{DDB}		2.9	5.8	
		1Mbps	I _{DDA}		2.1	3.2	Ī
	All Channels Switching with 50%	(500kHz)	I _{DDB}		2.1	3.2	mA
Supply Curre3.1nt – AC	Duty Cycle Square Wave Clock Input	10Mbps	I _{DDA}		5.6	7.8	
Signal	with 5V Amplitude; $C_L = 15$ pF for	(5MHz)	I _{DDB}		5.6	7.8	
	Each Channel	100Mbps	I _{DDA}		12.9	22	
		(50MHz)	I _{DDB}		12.9	22	

7.9.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

PARAMETER	TEST CONDITION	SUPPLY CURRENT	MIN	ТҮР	MAX	UNIT	
CA-IS3821							
	V _{IN} = 0V (CA-IS3821L);		I _{DDA}		1.2	1.9	
Supply Current – DC Signal	$V_{IN} = V_{DDI}$ (CA-IS3821H)		I _{DDB}		1.2	1.9	
Supply Current – DC Signal	V _{IN} = V _{DDI} (CA-IS3821L);		I _{DDA}		2.3	3.3	
	$V_{IN} = OV(CA-IS3821H)$		I _{DDB}		2.3	3.3	
		1Mbps	I _{DDA}		1.9	2.9	mA
	All Channels Switching with 50%	(500kHz)	I _{DDB}		1.9	2.9	ma
Supply Current AC Signal	Duty Cycle Square Wave Clock Input	10Mbps	I _{DDA}		4.2	5.9	
Supply Current – AC Signal	with 5V Amplitude; $C_L = 15$ pF for	(5MHz)	I _{DDB}		4.2	5.9	
	Each Channel	100Mbps	I _{DDA}		8.8	12.1	
		(50MHz)	I _{DDB}		8.8	12.1	
Note:							
1. V _{DDI} = Input-side V _{DD}							

7.9.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

PARAMETER	TEST CONDITION	SUPPLY CURRENT	MIN	ТҮР	MAX	UNIT	
A-IS3821							
	V _{IN} = 0V (CA-IS3821L);		I _{DDA}		1.5	1.9	
Cumply Current DC Cianal	$V_{IN} = V_{DDI}$ (CA-IS3821H)		I _{DDB}		1.5	1.9	
Supply Current – DC Signal	V _{IN} = V _{DDI} (CA-IS3821L);		I _{DDA}		2.1	3.1	
	$V_{IN} = 0V(CA-IS3821H)$		I _{DDB}		2.1	3.1	
		1Mbps	I _{DDA}		1.9	2.8	mA
	All Channels Switching with 50%	(500kHz)	I _{DDB}		1.9	2.8	IIIA
Supply Current – AC Signal	Duty Cycle Square Wave Clock Input	10Mbps	I _{DDA}		3.6	5.2	
Supply Current – AC Signal	with 5V Amplitude; $C_L = 15$ pF for	(5MHz)	I _{DDB}		3.6	5.2	
	Each Channel	100Mbps	I _{DDA}		6.9	9.5	
		(50MHz)	I _{DDB}		6.9	9.5	

上海川土微电子有限公司 7.10. Timing Characteristics

7.10.1. $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW _{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	Con Figure 9.1	5.0	12.0	15.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 8-1		0.2	4.5	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹	Same-direction		0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time	See Figure 8-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 8-1		2.5	4.0	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 8-2		8	12	ns
t _{SU}	Start-up Time			15	40	μs
		See rigule 6-2				

NOTE:

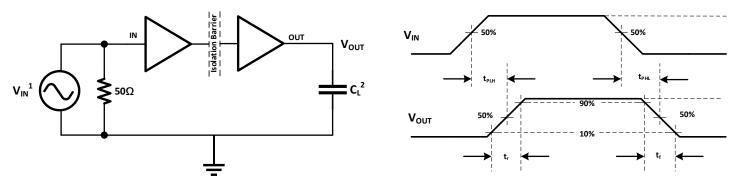
- $t_{sk(0)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

7.10.2. $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	Can Figure 9 1	5.0	12.0	15.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 8-1		0.2	4.5	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹	Same-direction		0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time	See Figure 8-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 8-1		2.5	4.0	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 8-2		8	12	ns
t _{SU}	Start-up Time			15	40	μs

NOTE:

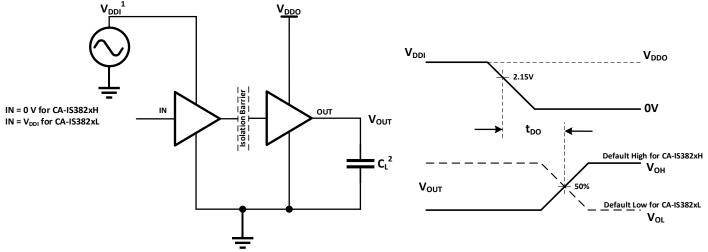
- t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.


7.10.3. $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	Can Figure 9 1	5.0	12.0	15.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 8-1		0.2	5.0	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹	Same-direction		0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²			2.0	5.0	ns
t _r	Output Signal Rise Time	See Figure 8-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 8-1		2.5	4.0	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 8-2		8	12	ns
t _{SU}	Start-up Time			15	40	μs

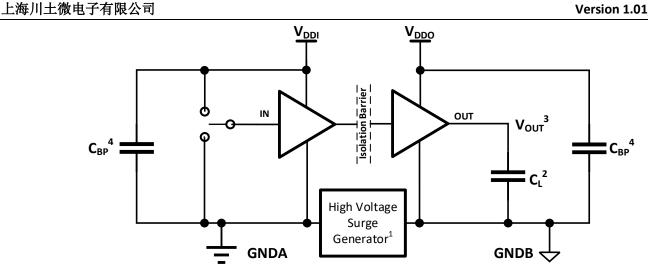
- t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

CHIPANALOG


8. Parameter Measurement Information

NOTE:

- 1. A square wave generator generate the V_{IN} input signal with the following constraints: waveform frequency \leq 100kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns. Since the waveform generator has an output impedance of $Z_{out} = 50\Omega$, the 50Ω resistor in the figure is used for matching. There is no need in the actual application.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.


Figure 8-1 Timing Characteristics Test Circuit and Voltage Waveforms

- 1. Power Supply Ramp Rate = 10 mV/ns. V_{DDI} should ramp over 2.375V but no higher than 5.5V.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 8-2 Default Output Delay Time Test Circuit and Voltage Waveforms

- The High Voltage Surge Generator generates repetitive high voltage surges with > 1kV amplitude and <10ns rise time and 1. fall time to reach common-mode transient noise with > 150kV/ μ s slew rate.
- C_L is the load capacitance about 15pF together with the instrumentation capacitance. 2.
- Pass-fail criteria: The output must remain stable whenever the high voltage surges come. 3.
- C_{BP} is the 0.1 ~ 1uF bypass capacitance. 4.

Figure 8-3 Common-Mode Transient Immunity Test Circuit

9. Detailed Description

9.1. Theory of Operation

The CA-IS38xx family of devices use a simple ON-OFF keying (OOK) modulation scheme to transmit signal across the SiO₂ isolation capacitors that provide a robust insulation between two different voltage domain and act as a high frequency signal path between the input and the output. The transmitter (TX) modulates the input signal onto the carrier frequency, that is, TX delivers high frequency signal across the isolation barrier in one input state and delivers no signal across the barrier in the other input state. Then the receiver rebuilds the input signal according to the detected in-band energy. This simple architecture offers a robust isolated data path and requires no special considerations or initialization at start-up. The capacitor-based signal path is fully differential to maximize noise immunity, which is also known as common-mode transient immunity. Advanced circuitry techniques are applied for better EMI introduced by the carrier signal and IO switching. The capacitively-coupled architecture provides much higher electromagnetic immunity compared to the inductively-coupled one. And OOK modulation scheme eliminates the missing-pulse error that occurs in the pulse modulation method. A simplified functional block diagram and conceptual operation waveforms of a single channel is shown in Figure 9-1 and Figure 9-2.

9.2. Functional Block Diagram

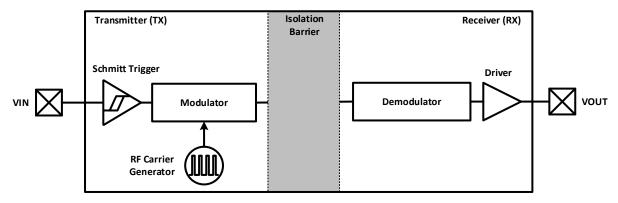


Figure 9-1 Functional Block Diagram of a Single Channel

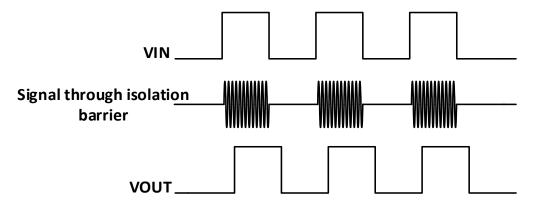


Figure 9-2 Conceptual Operation Waveforms of a Single Channel

9.3. Device Operation Modes

上海川土微电子有限公司

Table 9-1 provides the operation modes for the CA-IS3821 devices.

Table 9- 1 Operation Mode Table¹

V_{DDI}	V_{DDO}	INPUT(Ax/Bx) ²	OUTPUT (Ax/Bx)	OPERATION
		Н	Н	Normal operation mode:
		L	L	A channel's output follows the input state
PU	PU			Default output fail-safe mode:
		Open	Default	If a channel's input is left open, its output goes to the default value (Low for CA-IS382xL
				and High for CA-IS382xH).
				Default output fail-safe mode:
PD	PU	Χ	Default	If the input side VDD is unpowered, the outputs go in to the default output fail-safe mode
				(Low for CA-IS382xL and High for CA-IS382xH)
Х	PD	Х	Undetermined	If the output side VDD is unpowered, the outputs' states are undetermined. ³

- 1. V_{DDI} = Input-side V_{DD} ; V_{DDO} = Output-side V_{DD} ; PU = Powered up (VCC \geq 2.375 V); PD = Powered down (VCC \leq 2.25 V); X = Irrelevant; H = High level; L = Low level.
- 2. A strongly driven input signal can weakly power the floating V_{DD} through an internal protection diode and cause undetermined output.
- The outputs are in undetermined state when 2.25V < V_{DDI} , V_{DDO} < 2.375 V.

10. Application and Implementation

Unlike optocouplers, which need external components to improve performance, provide bias, or limit current, the CA-IS382x family device CMOS digital isolator needs only two external VDD bypass capacitors ($0.1\mu\text{F}$ to $1~\mu\text{F}$) to operate. Its TTL level compatible input terminals draw only micro amps of leakage current, allowing them to be driven without external buffering circuits. The output terminals have a characteristic impedance of 50 Ω (rail-to-rail swing) and are available in both forward and reverse channel configurations. Figure 10-1 shows the typical application schematic of CA-IS3821. And the circuit of Figure 10-2 is typical for most applications of CA-IS38xx series products and is as easy to use as a standard logic gate.

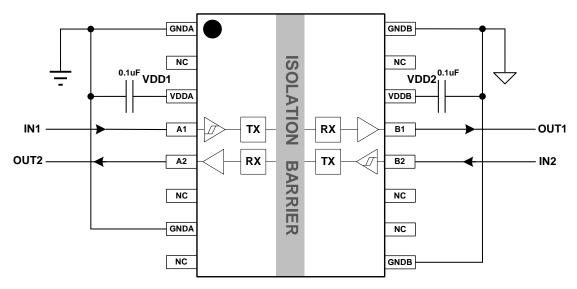
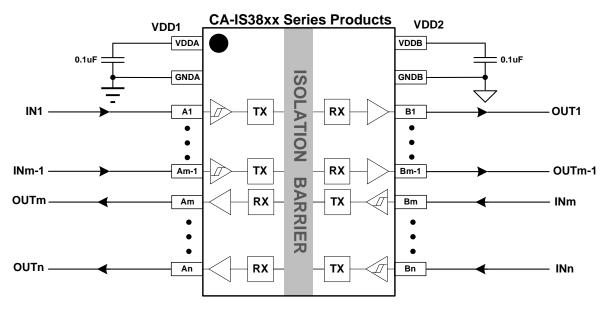
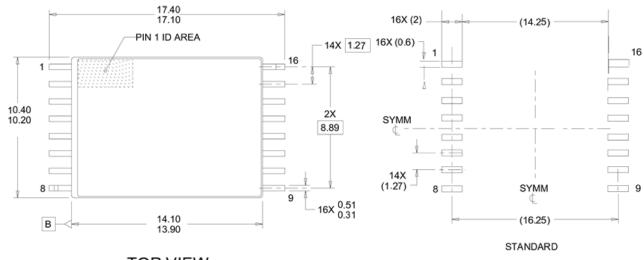
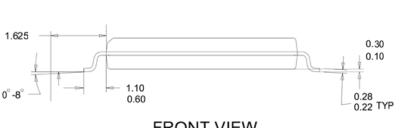


Figure 10-1 CA-IS3821 Digital Isolator Application Schematic




Figure 10-2 CA-IS38xx Series Digital Isolator Application Schematic

上海川土微电子有限公司 11. Package Information


11.1. 16-Pin Extra Wide Body SOIC Package

The figure below illustrates the package details and the recommended land pattern details for the CA-IS382x digital isolator in a 16-pin extra wide body SOIC package. The values for the dimensions are shown in millimeters.

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

12. Soldering Information

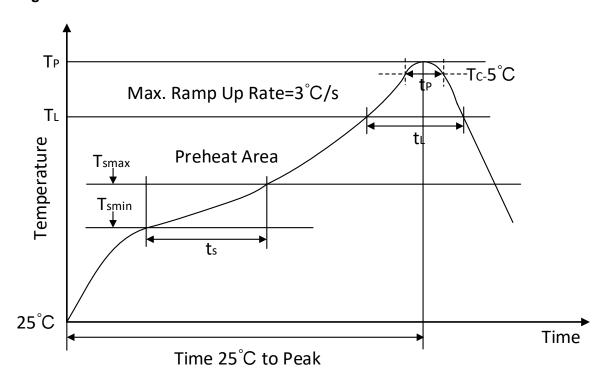
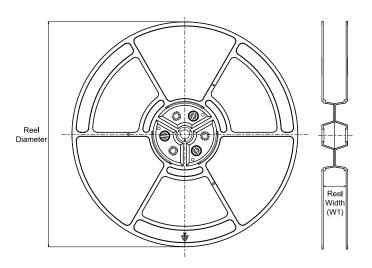
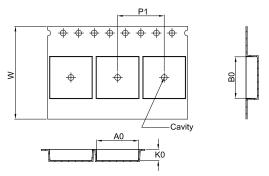


Figure 12-1 Soldering Temperature (reflow) Profile

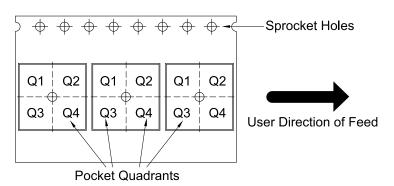

Table12-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly
Average ramp-up rate(217 °C to Peak)	3°C /second max
Time of Preheat temp(from 150 °C to 200 °C)	60-120 second
Time to be maintained above 217 °C	60-150 second
Peak temperature	260 +5/-0 °C
Time within 5°C of actual peak temp	30 second
Ramp-down rate	6 °C /second max.
Time from 25°C to peak temp	8 minutes max



13. Tape And Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Packa ge Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3821LWW	SOIC	WW	16	1000	330	24.4	10.7	17.7	3.1	16.0	24.0	Q1
CA-IS3821HWW	SOIC	WW	16	1000	330	24.4	10.7	17.7	3.1	16.0	24.0	Q1

14. Important Notice

The above information is for reference only and is used to assist Chipanalog customers in design and development. Chipanalog reserves the right to change the above information due to technological innovation without prior notice.

Chipanalog products are all factory tested. The customers shall be responsible for self-assessment and determine whether it is applicable for their specific application. Chipanalog's authorization to use the resources is limited to the development of related applications that the Chipanalog products involved in. In addition, the resources shall not be copied or displayed. And Chipanalog shall not be liable for any claim, cost, and loss arising from the use of the resources.

Trademark Information

Chipanalog Inc. ®, Chipanalog® are trademarks or registered trademarks of Chipanalog.

http://www.chipanalog.com