MotorPro

New paradigm for Motor Design

KOMOTEK

Overview

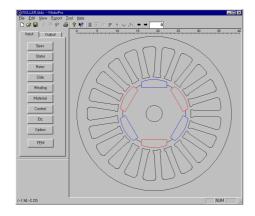
MotorPro is a software package dedicated to electric motors for analyzing/designing of motor. It combines conventional analysis method, magnetic-equivalent circuit method, and finite element method with the latest computer technology. The user is able to select what he/she wants and changes the variables to analyze/design the new motor with the libraries which contain information of shape of motor (rotor, stator, winding), materials and output forms. MotorPro doesn't require any finite element skills because all finite element processes are automated. Improved graphic user interface and various utility functions will provide what the motor developer/designer want in shorter, easier and clearer.

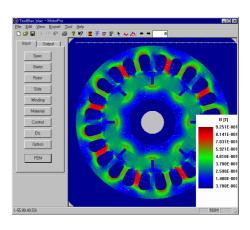
Modules

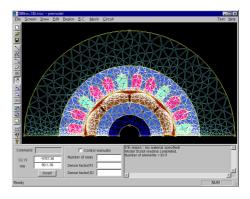
BLDC

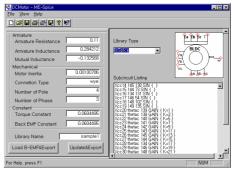
 \rightarrow Module for Brushless DC and PMAC motor SRM

 \rightarrow Module for Switched Reluctance Motor PMDC


→ Module for Permanent Magnet DC motor MESpice


 \rightarrow Module for generating library for circuit simulator PreModel


 \rightarrow Module for arbitrary shape design


Fields

- Motor manufacturing
- System engineering
- Education

Features

Graphic User Interface

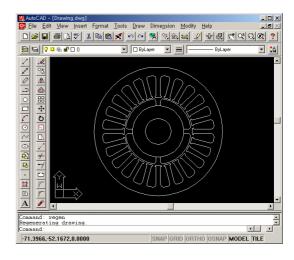
Model Library

- slot
- rotor

Material D.B.

- steel
- magnet (ferrite, neodymium, samarium, alnico)

• wire


Winding Design

- support automatic winding
- easy to check MMF

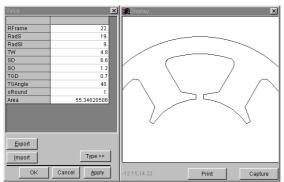
Interface with AutoCAD

• import slot/rotor shape in type of AutoCAD's dxf

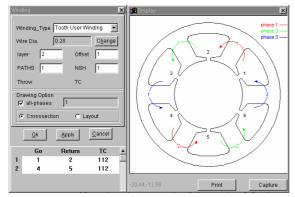
• export basic drawing's for motor into type of AutoCAD's dxf

Dynamic Characteristic

• torque, speed and current versus time

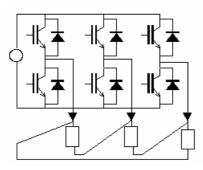

Fully Automated FEM

• you can get FEA results with a few clicks using FEA wizard


Static Kt	Max Torque Angle[e.deg] 0	
Inductance	Mode	
	C Express	
BackEMF & Flux Linkage	Custom	
Torque Ripple & Coreloss		
	Material assumption	
Cogging Torque	C Linear	
Magnet & Rotor Yoke Only	Non-Linear	

BLDC

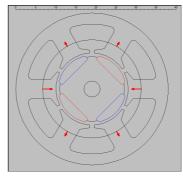
- Input
- specifications
- stator



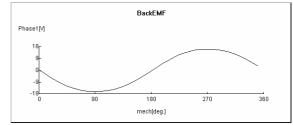
- rotor which includes magnet shape and direction
- side
- winding

-

- materials (magnets, steel)
- electrics (DC / AC)

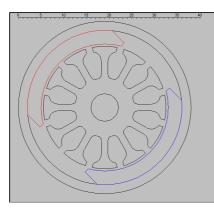


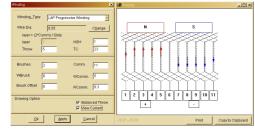
-


- etc & adjustment factors

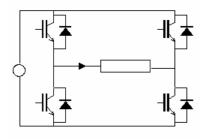
• FEM Wizard

- airgap flux density
- cogging torque
- k_T and k_T profile
- inductance
- back-EMF
- coreloss
- Utility
 - winding frame
- automatically get maximum torque angle
- ampere conductor distributions
- MMF distributions

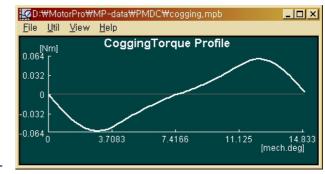

- Output
- all input parameters
- output parameters obtained by FEM and/or magnetic circuit analysis
- characteristic curve
- waveform such as airgap flux density, cogging torque, back-EMF and etc.


- -
- dynamic characteristic curve
- FEM post processing
- field lines and flux density distribution by rotating the rotor
- $\cdot \,$ flux density at point, on line and arc

PMDC


- Input
- specifications
- stator which includes magnet shape and direction

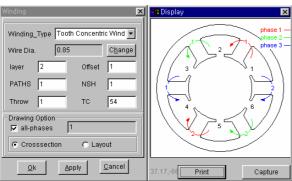
- -
- rotor
- side
- winding which includes brush and commutator



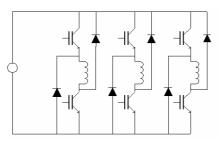
- materials (magnets, steel)
- electrics

- -
- etc & adjustment factors
- FEM Wizard
 - airgap flux density
- cogging torque
- k_T and k_T profile


- inductance
- back-EMF
- coreloss
- Utility
- winding frame
- ampere-conductor distributions
- MMF distributions
- Output
- all input parameters
- output parameters obtained by FEM and/or magnetic circuit analysis
- characteristic curve
- waveform such as airgap flux density, cogging torque, back-EMF and etc.

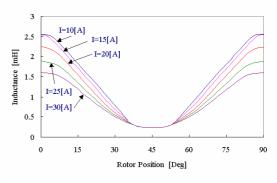

- dynamic characteristic curve
- FEM post processing
- field lines and flux density distribution by rotating the rotor
- $\cdot \,$ flux density at point, on line and arc

SRM

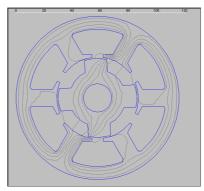

- Input
- specifications
- stator
- rotor

- -
- side
- winding

- materials (steel)
- electrics


-

- etc & adjustment factors


• FEM Wizard

- airgap flux density

- k_T and k_T profile
- inductance profile
- magnetization curve

- -
- coreloss
- Utility
 - winding frame
 - ampere-conductor distributions
- MMF distributions
- Output
 - all input parameters
- output parameters obtained by FEM and/or magnetic circuit analysis
- waveform such as airgap flux density, magnetization curve
- dynamic characteristic curve
- FEM post processing
- field lines and flux density distribution by rotating the rotor
- $\cdot \,$ flux density at point, on line and arc

PreModel

Overview

The electric engineers with much interest in the numerical analysis of electromagnetic field look for their own field, which needs their knowledge. PreModel makes it possible to modify the motor in more details for the purpose of the numerical analysis of electromagnetic field and it will show impressive capability in add-on.

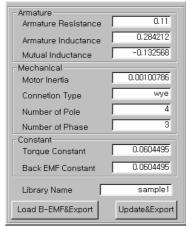
Features

- MotorPro add-on
- structure define and editing

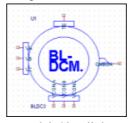
material defining

Region Name:		Clear to Air
Hegion Maine.		Bir
Relative Permeabili	ty	
Linear	<u>M</u> u:	1.
C N <u>o</u> nlinear	<u>B</u> -H name:	_
Magnet		
⊙ <u>×</u> - Y	Br(<u>T</u> esla):	0
C <u>B</u> - Theta	Angle(<u>d</u> egre	e): 0
<u>C</u> enter:	0	0
Current		
Ampere/turn:		 Current Density # of Turns" is 0
Number of T <u>u</u> rns:	0	
OK.	Cancel	Help

- import Autocad's DXF
- mesh refinement based on geometry complexity

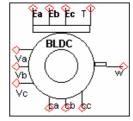

ME-Spice

Overview


The control device and motor has close relation because of technological improvement of semiconductor and power-electronic technology, and the motor requires the system to drive and control. However, it would be insufficient for engineers to spend much time to understand the sophisticated motor. ME-Spice can free the engineers from these kinds of problems as the motor library program for common motor control circuit simulator.

Features

import MotorPro's MD file


Pspice

Matlab Simulink

	wmþ
> vabc	theta 👂
	iabc >
> Tload	eabc >
	Te
E	9LDCM

