

LS EHV Cable System 66~500kV XLPE Cable & Accessories

Energy Cables & Systems LS Cable-setting the standards in power solution business

Industrial Materials Realizing a convenient future with cutting-edge materials

Telecommunications Providing cutting-edge, innovative technologies for a ubiquitous network

0.0

Integrated Modules

& Cable Systems Providing the best customized cable solutions for all environments

LS Cable Company Profile

Total Solution Provider for Electric Power and Telecommunication Industries

LS Cable, the longtime de facto holding company of LS Group, officially transformed into a holding company in July of 2008. The company's operations now encompass a total solution for electric power and telecommunication industries.

The latest change in corporate structure comes as the company is accelerating efforts to improve management efficiency in rapidly expanding markets. The move also results from efforts to effect a more responsible and transparent management structure. Management is now prepared to take more aggressive action to enhance our businesses and to identify new growth engines. The holding company will take the lead in fostering new growth engines and in identifying lucrative investment opportunities, while the company's other business units will focus on improving management and on making operations more efficient. With the continued support of the holding company, LS Cable will spearhead efforts to strengthen our business expertise, corporate competitiveness and management.

Toward the Global Leading Cable Company

In August of 2008 LS Cable acquired Superior Essex, North America's largest cable company, making LS Cable the third-largest player in the global cable industry. Superior Essex's flagship line of magnet wires and telecommunication cables further strengthened LS Cable's product lineup, which had focused on power cables, fiber optic cables and industrial materials. Superior Essex's extensive North America and European production and distribution networks will help LS Cable cement a presence in the region and bring the company one step closer to becoming a full-fledged global enterprise.

Superior Essex

Superior Essex Inc., a FORTUNE 1,000 company, is one of the largest wire and cable manufacturers in the world. The company manufactures and supplies a broad portfolio of wire and cable products for the communications, energy, automotive, industrial, and commercial & residential end-markets. It is a leading manufacturer of magnet wire, fabricated insulation products, and copper and fiber optic communications wire and cable. It is also a leading distributor of magnet wire, insulation and related products.

Our Philosophy

At LS Cable, we understand our responsibility and our potential in leading society to remarkable improvements in varied facets of human life and society. For the past many decades we successfully took the challenge of providing our clients with solutions and support systems to service their globe-spanning businesses. We recognize the significance of our contributing customer-oriented services for the betterment of the society and its operations.

We believe that our responsibility should not end in mere execution of our customers' project, but should extend towards contributing our knowledge and expertise in returning value to their company and to the society within which they live. Our vision is to provide world class services and products to our clients with a sense of responsibility and accountability towards them, their employees and ultimately the society

We are determined to shoulder our responsibility of serving the society by protecting the environment. We bear the vision of alleviating the illeffects on the ecosystem and human life using more advanced technology. We are persistently in the process of putting our philosophy in action.

LS EHV Cable System

66~500kV XLPE Cable & Accessories

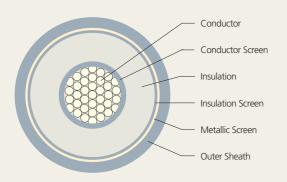
Total Solution for Underground Transmission System

LS Cable is one of the world's leading manufacturers of extra high voltage cable and accessories and also one of a few total solution providers of underground transmission system. We are prominently capable and facilitated in researching, designing, developing, and manufacturing products and solutions with a heritage of decades as a cable manufacturer and ceaseless invest on quality control. We provide power system from 66kV ~ 500kV such as XLPE cables, terminations, joints and other related products as some parts of our total solution maximizing the competitive advantage in 230kV and higher voltage system. Especially, the certificate for the satisfactory completion of Type Test and Pre-qualification Test by KEMA lasted for 365 days in 400kV XLPE cable and accessories and shows the quality of full range of our products and system.

Commitment to Our Customers

As an extra high voltage cable and accessories manufacturer and a division of LS Cable, we never stop researching, designing, developing, and manufacturing products with the higher level of quality to address the ever-changing demands in everyday life as well as in the industry.

Our quality control meets the most delicate requirements of international standards and the high level of quality is recognized both by local and international clients. Our commitment to develop and deliver solutions to address our customers' needs and challenges keep our technology on the cutting edge and our know-how in the field more valuable, which our customers highly appreciate. We are looking forward to working with you.


Contents

1.00	Design & Construction of XLPE Cable	08
2.00	Manufacturing Process & VCV Line	10
3.00	Cable Construction & Continuous Current Ratings	12
4.00	XLPE Insulated Cables	13
5.00	Correction Factors for Various Laying Conditions	35
6.00	Permissible Short Circuit Currents	36
7.00	Accessories for EHV Cable Systems	37
8.00	Monitoring & Diagnosis System	54
9.00	Appendix	57
10.00	Global Network	62

1.00 Design & Construction of XLPE Cable

Structure of XLPE Cable

The XLPE Cable has the construction of a conductor (copper or aluminum) insulated with the cross-linked polyethylene and then shielded with metallic screen (corrugated and seamless aluminum or wire shield), to be covered by PVC or polyethylene for anticorrosion.

Conductor

The conductor consists of annealed copper or hard aluminum stranded wires and classified into three (3) major types of concentric, compacted circular and segmental compacted circular.

The concentric is the wires wounded up concentrically, the compacted circular conductor consists of segments wounded up and then compacted. Normally the segmental compacted circular conductor has four (4) segments and is applied for the cross-section over than 800mm², to prevent the increase of A.C. resistance caused by skin effect. When the conductor's cross-section is less than 630mm², the compacted circular is applied generally.

Conductor Screen

The conductor screen consists of an extruded semi-conducting polyethylene to minimize electrical stresses due to the stranded configuration of the conductor. The semi-conducting material used for conductor screen has no deleterious effect on the conductor. Semi-conducting tape is sometimes applied as a separator.

Insulation

The insulation material is extruded cross-linked polyethylene. The conductor screen, the insulation and the insulation screen mentioned to the following clause are extruded simultaneously in one process to ensure that the screen and insulation are intimately bonded together and free from all possibilities of voids between layers.

The extrusion process is carried out under strictly controlled atmospheric conditions.

The thickness of the insulation layer is the maximum value figured out from the design of the impulse voltage and A.C. voltage.

The conventional cross-linking process by saturated steam has frequently caused deterioration of the electrical characteristics of the insulation as treeing phenomena arose when put to use for long time. But the new process by N_2 gas has enabled to protect the electrical characteristics from being deteriorated and to lessen the thickness of the insulation and accordingly the cable's outer diameter itself.

Insulation Screen

The insulation screen is provided over the insulation by extruding the semi-conducting compound concentrically and circularly to minimize the possibility of ionization on the outer surface of the dielectric.

Metallic Screen

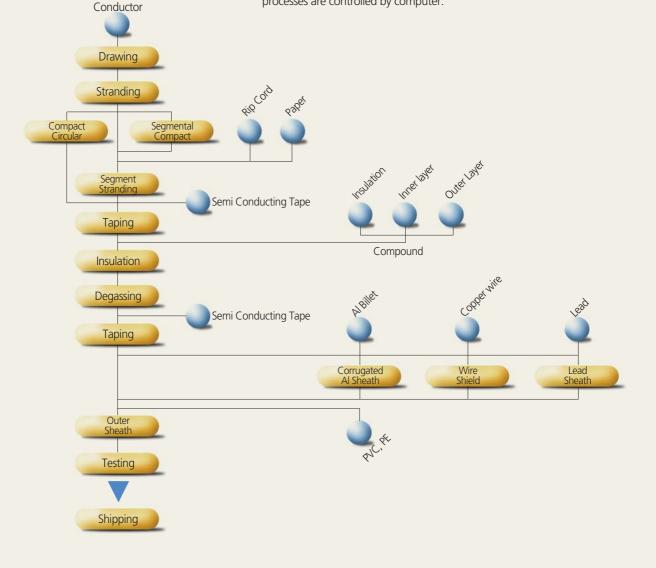
The metallic screen consists of the wire shield, the corrugated aluminum sheath or the lead sheath. The corrugated aluminum sheath and the lead sheath is also adopted where the surface of duct is poor and where moisture is high.

Outer Sheath

To protect the metallic sheath from electrical or chemical corrosion, it is covered by PE or PVC.

Corrugated Aluminum Sheath Cable Lead Sheath Cable

Wire Shield Cable


Copper Laminated Cable

2.00 Manufacturing Process & VCV Line

The system adopted for insulation of the XLPE Cable is VCV and N_2 gas is used for cross linking, and the line is extruded in a vertical type. The outstanding characteristics of the XLPE Cable manufactured in application of this system are :

- 1. The insulation has no eccentricity.
- 2. The cross-linking by use of N_2 gas guarantees excellent electrical characteristics of the insulation.
- 3. The simultaneous extrusion of the inner and outer semi-conducting layers and the insulation prevents treeing and other irregularities.
- 4. Uniformity of quality is maintained of all products as the manufacturing processes are controlled by computer.

Extrusion -

The conductor screen, the insulation and the insulation screen are simultaneously extruded with the compounds supplied from the clean room.

Cross-Linking and Cooling –

The corss-linking takes place in curing zone of A by circulating N_2 gas and the insulation is formed into core through precooling zone of B and cooling zone of C.

Pay Off The conductor wound up around

the drum is set at pay off to run to metering capstan.

3.00 Cable Construction & Continuous Current Ratings

The continuous current capacity is calculated in accordance with IEC 60287.

Laying Conditions

- 1) Ground Temperature : 25 ℃
- 2) Depth of Laying : 1.5m
- 3) Soil Thermal Resistivity : 1.0°Cm/W
- 4) Ambient Temperature : 40 °C
- 5) Max. Conductor Temperature : 90 °C
- 6) Cable Formation : Flat (S=2D)
- S : Distance between cables / D : Cable diameter
- 7) Frequency : 50Hz
- 8) Load factor : 100%

Maximum Permissible Conductor Temperature

Normal Operation	Emergency Operation	Short Circuit
90 <i>°</i> C	105℃	250℃

1) Normal Operation

Normal operation is meant to be maintained through out a given period of time everyday or continuously, without affecting the operation.

2) Emergency Load

Emergency load is meant to be maintained for a short time under the condition of system breakdown or under the state of excessively loaded operation, without causing a defect.

3) Short Circuit

Short circuit is meant to cause no defect of the cable when an irregular current, flows for short time due to shorting or earthing.

4.00 XLPE Insulated Cables

4.01 36/66 (72.5) kV with Aluminum Sheath

4.02 36/66 (72.5) kV with Lead Sheath

4.03 36/66 (72.5) kV with Copper Wire Shield

4.04 64/110 (123) kV with Aluminum Sheath

4.05 64/110 (123) kV with Lead Sheath

4.06 64/110 (123) kV with Copper Wire Shield

4.07 76/132 (145) kV with Aluminum Sheath 4.08 76/132 (145) kV with Lead Sheath

4.09 76/132 (145) kV with Copper Wire Shield

4.10 87/161 (170) kV with Aluminum Sheath

4.11 87/161 (170) kV with Lead Sheath

4.12 87/161 (170) kV with Copper Wire Shield

4.13 127/230 (245) kV with Aluminum Sheath

4.14 127/230 (245) kV with Lead Sheath

4.15 127/230 (245) kV with Copper Wire Shield

4.16 190/345 (362) kV with Aluminum Sheath

4.17 190/345 (362) kV with Lead Sheath

4.18 220/400 (420) kV with Aluminum Sheath

4.19 220/400 (420) kV with Lead Sheath

4.20 290/500(550)kV with Alumimum Sheath 4.21 290/500(550)kV with Lead Sheath

4.01 36/66 (72.5) kV with Aluminum Sheath

Aluminum Sheath

Construction

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Pipe Duct				
Cross-sectional Area (mm)	Direct Burieu	ripe Duci	Trefoil	Flat (S=2D)		
240	524	491	598	671		
300	592	556	682	770		
400	671	631	781	888		
500	762	714	894	1025		
630	878	808	1023	1187		
800	965	928	1150	1355		
1000	1119	1075	1361	1615		
1200	1198	1146	1460	1745		
1600	1352	1357	1654	2030		
2000	1468	1475	1800	2273		

	Conductor	1	Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Aluminum Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²					mm				kg / m		μF/ km
240		18.1	1.0	11.0	1.0	1.6	3.5	69	5.5	0.0754	0.20
300		20.4	1.0	11.0	1.0	1.6	3.5	72	6.3	0.0601	0.21
400	Compact Round	23.2	1.0	11.0	1.0	1.7	3.5	75	7.2	0.0470	0.23
500	Stranded	26.3	1.0	11.0	1.0	1.8	4.0	79	8.6	0.0366	0.25
630		30.2	1.0	11.0	1.0	1.8	4.0	83	10.1	0.0283	0.28
800		34.0	1.0	11.0	1.0	1.9	4.0	87	12.0	0.0221	0.30
1000		38.7	1.0	11.0	1.0	2.0	4.0	92	14.4	0.0176	0.33
1200	Segment Stranded (Miliken)	41.8	1.0	11.0	1.0	2.1	4.5	98	16.7	0.0151	0.36
1600		48.1	1.0	11.0	1.0	2.2	4.5	105	20.9	0.0113	0.40
2000		54.3	1.0	11.0	1.0	2.4	4.5	112	25.4	0.0090	0.44

4.02 36/66 (72.5) kV with Lead Sheath

Lead Sheath

Constructional Data (Nominal Values)

	Conductor		Thickness of Thickness of		Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Lead Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Ω/ km	μF7 km
240		18.1	1.0	11.0	1.0	2.1	3.5	62	8.1	0.0754	0.20
300		20.4	1.0	11.0	1.0	2.2	3.5	64	9.1	0.0601	0.21
400	Compact Round	23.2	1.0	11.0	1.0	2.3	3.5	67	10.5	0.0470	0.23
500	Stranded	26.3	1.0	11.0	1.0	2.4	4.0	72	12.5	0.0366	0.25
630		30.2	1.0	11.0	1.0	2.4	4.0	76	14.2	0.0283	0.28
800		34.0	1.0	11.0	1.0	2.6	4.0	80	16.9	0.0221	0.30
1000		38.7	1.0	11.0	1.0	2.7	4.0	85	19.9	0.0176	0.33
1200	Segment Stranded (Miliken)	41.8	1.0	11.0	1.0	2.8	4.5	91	23.0	0.0151	0.36
1600		48.1	1.0	11.0	1.0	3.0	4.5	97	28.0	0.0113	0.40
2000		54.3	1.0	11.0	1.0	3.2	4.5	104	33.4	0.0090	0.44

290/500 (525) kV

4.03 36/66 (72.5) kV with Copper Wire Shield

Copper Wire Shield

- Copper Conductor XLPE Insulation
- Copper Wire Shield PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Pipe Duct	In Air			
		ripe Duci	Trefoil	Flat (S=2D)		
240	530	483	606	692		
300	599	544	693	795`		
400	683	616	802	925		
500	780	729	929	1075		
630	886	828	1066	1247		
800	997	929	1210	1432		
1000	1173	1087	1473	1728		
1200	1270	1173	1611	1894		
1600	1465	1375	1883	2245		
2000	1627	1530	2111	2556		

	Conductor	1	Thickness of Thickness of		Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.		Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg / m	Ω/km	μF/ km
240		18.1	1.0	11.0	1.0	1.2 x 40	3.5	58	4.4	0.0754	0.20
300		20.4	1.0	11.0	1.0	1.2 x 40	3.5	60	5.1	0.0601	0.21
400	Compact Round	23.2	1.0	11.0	1.0	1.2 x 40	3.5	63	5.9	0.0470	0.23
500	Stranded	26.3	1.0	11.0	1.0	1.2 x 40	4.0	66	7.2	0.0366	0.25
630		30.2	1.0	11.0	1.0	1.2 x 40	4.0	71	8.6	0.0283	0.28
800		34.0	1.0	11.0	1.0	1.2 x 40	4.0	75	10.4	0.0221	0.30
1000		38.7	1.0	11.0	1.0	1.2 x 40	4.0	80	12.7	0.0176	0.33
1200	Segment Stranded (Miliken)	41.8	1.0	11.0	1.0	1.2 x 40	4.5	85	14.7	0.0151	0.36
1600		48.1	1.0	11.0	1.0	1.2 x 40	4.5	91	18.7	0.0113	0.40
2000		54.3	1.0	11.0	1.0	1.2 x 40	4.5	97	22.7	0.0090	0.44

Aluminum Sheath

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Dino Duct				
Cross-sectional Area (mm)	Direct buried	Pipe Duct	Trefoil	Flat (S=2D)		
240	520	491	592	657		
300	587	550	677	755		
400	667	639	775	873		
500	758	725	889	1006		
630	860	821	1020	1169		
800	961	915	1147	1333		
1000	1109	1057	1346	1581		
1200	1187	1180	1451	1717		
1600	1338	1332	1635	1995		
2000	1458	1447	1787	2236		
2500	1538	1526	1885	2358		
2000	1458	1447	1787	2236		


Constructional Data (Nominal Values)

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Aluminum Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Ω/ km	µF/km
240		18.1	1.2	14.0	1.0	1.7	3.5	76	6.3	0.0754	0.17
300		20.4	1.2	14.0	1.0	1.8	3.5	78	7.0	0.0601	0.18
400	Compact Round	23.2	1.2	14.0	1.0	1.8	3.5	81	8.0	0.0470	0.20
500	Stranded	26.3	1.2	14.0	1.0	1.9	4.0	86	9.3	0.0366	0.21
630		30.2	1.2	14.0	1.0	2.0	4.0	90	11.0	0.0283	0.23
800		34.0	1.2	14.0	1.0	2.0	4.0	94	12.9	0.0221	0.25
1000		38.7	1.2	14.0	1.0	2.1	4.0	99	15.4	0.0176	0.28
1200	6	41.8	1.2	14.0	1.0	2.2	4.5	104	17.7	0.0151	0.30
1600	Segment Stranded (Miliken)	48.1	1.2	14.0	1.0	2.4	4.5	111	22.1	0.0113	0.33
2000		54.3	1.2	14.0	1.0	2.5	4.5	118	26.5	0.0090	0.36
2500		63.0	1.2	14.0	1.0	2.6	4.5	128	33.0	0.0072	0.40

290/500 (525) kV

4.05 64/110 (123) kV with Lead Sheath

Lead Sheath

	Conductor	1	Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Lead Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Ω/km	μF/ km
240		18.1	1.2	14.0	1.0	2.3	3.5	68	9.6	0.0754	0.17
300		20.4	1.2	14.0	1.0	2.4	3.5	71	10.9	0.0601	0.18
400	Compact Round	23.2	1.2	14.0	1.0	2.5	3.5	74	12.3	0.0470	0.20
500	Stranded	26.3	1.2	14.0	1.0	2.5	4.0	78	13.8	0.0366	0.21
630		30.2	1.2	14.0	1.0	2.6	4.0	82	16.0	0.0283	0.23
800		34.0	1.2	14.0	1.0	2.7	4.0	86	18.5	0.0221	0.25
1000		38.7	1.2	14.0	1.0	2.9	4.0	92	21.9	0.0176	0.28
1200		41.8	1.2	14.0	1.0	3.0	4.5	97	24.7	0.0151	0.30
1600	Segment Stranded (Miliken)	48.1	1.2	14.0	1.0	3.2	4.5	103	30.1	0.0113	0.33
2000		54.3	1.2	14.0	1.0	3.4	4.5	110	35.7	0.0090	0.36
2500		63.0	1.2	14.0	1.0	3.6	4.5	118	42.0	0.0072	0.40

Copper Wire Shield

Construction

- Copper Conductor XLPE Insulation
- Copper Wire Shield PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Direct Ruriod	Dino Duct				
Direct buried	ripe Duci	Trefoil	Flat (S=2D)		
528	495	605	682		
597	559	692	783		
681	650	800	909		
775	739	922	1053		
884	841	1065	1226		
994	945	1208	1406		
1169	1106	1465	1695		
1264	1231	1595	1849		
1456	1415	1860	2185		
1618	1570	2089	2487		
1706	1656	2203	2623		
	597 681 775 884 994 1169 1264 1456 1618	528 495 597 559 681 650 775 739 884 841 994 945 1169 1106 1264 1231 1456 1415 1618 1570	Direct Buried Pipe Duct Trefoil 528 495 605 597 559 692 681 650 800 775 739 922 884 841 1065 994 945 1208 1169 1106 1465 1264 1231 1595 1456 1415 1860 1618 1570 2089		

Constructional Data (Nominal Values)

	Conductor		Thickness of	Thickness of	Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.		Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg / m	Ω/ km	µF7km
240		18.1	1.2	14.0	1.0	1.2 x 40	3.5	64	5.0	0.0754	0.17
300		20.4	1.2	14.0	1.0	1.2 x 40	3.5	66	5.7	0.0601	0.18
400	Compact Round	23.2	1.2	14.0	1.0	1.2 x 40	3.5	69	6.6	0.0470	0.20
500	Stranded	26.3	1.2	14.0	1.0	1.2 x 40	4.0	73	7.9	0.0366	0.21
630		30.2	1.2	14.0	1.0	1.2 x 40	4.0	77	9.4	0.0283	0.23
800		34.0	1.2	14.0	1.0	1.2 x 40	4.0	81	11.2	0.0221	0.25
1000		38.7	1.2	14.0	1.0	1.2 x 40	4.0	86	13.6	0.0176	0.28
1200		41.8	1.2	14.0	1.0	1.2 x 40	4.5	91	15.6	0.0151	0.30
1600	Segment Stranded (Miliken)	48.1	1.2	14.0	1.0	1.2 x 40	4.5	97	19.6	0.0113	0.33
2000		54.3	1.2	14.0	1.0	1.2 x 40	4.5	103	23.7	0.0090	0.36
2500		63.0	1.2	14.0	1.0	1.2 x 40	4.5	111	29.0	0.0072	0.40

290/500 (525) kV

36/66 (72.5) kV

64/110 (123) kV

4.07 76/132 (145) kV with Aluminum Sheath

Aluminum Sheath

(onetruction	
Constructior	

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross Sactional Area (mm ²)	Direct Buried	Dino Duct		
Cross-Sectional Area (mm ²)	Direct Durieu	Pipe Duct	Trefoil	Flat (S=2D)
240	519	486	589	649
300	585	547	671	742
400	665	635	770	858
500	755	716	883	992
630	856	814	1011	1151
800	956	942	1137	1313
1000	1103	1093	1333	1555
1200	1185	1170	1439	1695
1600	1333	1324	1627	1972
2000	1452	1435	1777	2211
2500	1530	1512	1872	2330

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Aluminum Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Ω/km	μF/ km
240		18.1	1.5	16.0	1.3	1.8	4.5	83	7.1	0.0754	0.16
300		20.4	1.5	16.0	1.3	1.8	4.5	86	7.9	0.0601	0.17
400	Compact Round	23.2	1.5	16.0	1.3	1.9	4.5	89	8.9	0.0470	0.18
500	Stranded	26.3	1.5	16.0	1.3	2.0	4.5	92	10.2	0.0366	0.20
630		30.2	1.5	16.0	1.3	2.1	4.5	97	11.9	0.0283	0.21
800		34.0	1.5	16.0	1.3	2.2	4.5	101	14.0	0.0221	0.23
1000		38.7	1.5	16.0	1.3	2.2	4.5	106	16.6	0.0176	0.25
1200	Compant Ctranded	41.8	1.5	16.0	1.3	2.3	4.5	110	18.6	0.0151	0.27
1600	Segment Stranded (Miliken)	48.1	1.5	16.0	1.3	2.4	4.5	116	22.9	0.0113	0.30
2000		54.3	1.5	16.0	1.3	2.6	4.5	124	27.4	0.0090	0.32
2500		63.0	1.5	16.0	1.3	2.8	4.5	131	34.3	0.0072	0.36

4.08 76/132 (145) kV with Lead Sheath

Lead Sheath

				cuit (A)	
Cross-Section	ional Area (mm²)	Direct Buried	Pipe Duct	In Trefoil	Air Flat (S=2D)
	240	530	495	612	679
	300	600	559	702	781
	400	684	636	808	904
	500	780	727	934	1050
	630	889	840	1077	1222
	800	997	941	1222	1400
	1000	1170	1100	1469	1681
	1200	1264	1226	1599	1842
	1600	1449	1404	1853	2168
	2000	1600	1548	2064	2460
	2500	1686	1631	2175	2592

Constructional Data (Nominal Values)

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area		Diameter	Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Lead Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Ω/ km	μF7 km
240		18.1	1.5	16.0	1.3	2.4	4.5	76	11.2	0.0754	0.16
300		20.4	1.5	16.0	1.3	2.5	4.5	78	12.3	0.0601	0.17
400	Compact Round	23.2	1.5	16.0	1.3	2.6	4.5	81	13.8	0.0470	0.18
500	Stranded	26.3	1.5	16.0	1.3	2.7	4.5	85	15.6	0.0366	0.20
630		30.2	1.5	16.0	1.3	2.7	4.5	88	17.5	0.0283	0.21
800		34.0	1.5	16.0	1.3	2.9	4.5	93	20.4	0.0221	0.23
1000		38.7	1.5	16.0	1.3	3.0	4.5	98	23.6	0.0176	0.25
1200		41.8	1.5	16.0	1.3	3.1	4.5	102	26.5	0.0151	0.27
1600	Segment Stranded (Miliken)	48.1	1.5	16.0	1.3	3.3	4.5	108	31.7	0.0113	0.30
2000		54.3	1.5	16.0	1.3	3.5	4.5	115	37.7	0.0090	0.32
2500		63.0	1.5	16.0	1.3	3.7	4.5	123	44.3	0.0072	0.36

190/345 (362)

4.09 76/132 (145) kV with Copper Wire Shield

Copper Wire Shield

Construction

- Copper Conductor XLPE Insulation
- Copper Wire Shield PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Pipe Duct					
	Direct buried	ripe Duci	Trefoil	Flat (S=2D)			
240	525	492	601	673			
300	593	555	688	774			
400	675	632	792	896			
500	767	716	908	1033			
630	872	811	1045	1200			
800	979	932	1182	1374			
1000	1145	1087	1420	1649			
1200	1233	1212	1539	1801			
1600	1414	1388	1784	2125			
2000	1569	1532	2003	2418			
2500	1653	1614	2111	2548			

	Conductor	1	Thickness of	Thickness of	Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.		Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg / m	Ω/km	µF/ km
240		18.1	1.5	16.0	1.3	1.5 x 80	4.5	70	6.5	0.0754	0.16
300		20.4	1.5	16.0	1.3	1.5 x 80	4.5	72	7.1	0.0601	0.17
400	Compact Round	23.2	1.5	16.0	1.3	1.5 x 80	4.5	75	8.1	0.0470	0.18
500	Stranded	26.3	1.5	16.0	1.3	1.5 x 80	4.5	80	9.5	0.0366	0.20
630		30.2	1.5	16.0	1.3	1.5 x 80	4.5	84	11.0	0.0283	0.21
800		34.0	1.5	16.0	1.3	1.5 x 80	4.5	88	12.9	0.0221	0.23
1000		38.7	1.5	16.0	1.3	1.5 x 80	4.5	93	15.3	0.0176	0.25
1200		41.8	1.5	16.0	1.3	1.5 x 80	4.5	96	17.1	0.0151	0.27
1600	Segment Stranded (Miliken)	48.1	1.5	16.0	1.3	1.5 x 80	4.5	102	21.2	0.0113	0.30
2000		54.3	1.5	16.0	1.3	1.5 x 80	4.5	110	25.8	0.0090	0.32
2500		63.0	1.5	16.0	1.3	1.5 x 80	4.5	118	31.4	0.0072	0.36

Aluminum Sheath

Construction

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Pipe Duct	In Air			
	Direct buried	ripe Duci	Trefoil	Flat (S=2D)		
300	584	558	669	740		
400	664	634	768	855		
500	754	718	879	988		
630	853	811	1009	1146		
800	953	938	1134	1307		
1000	1100	1087	1328	1548		
1200	1179	1163	1429	1684		
1600	1331	1311	1627	1967		
2000	1447	1485	1774	2199		
2500	1523	1563	1868	2315		

Constructional Data (Nominal Values)

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Aluminum Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²			mm				mm		kg / m		μF7 km
300		20.4	1.5	17	1.3	1.9	4.5	87	8.4	0.0601	0.16
400	Compact Round	23.2	1.5	17	1.3	1.9	4.5	91	9.4	0.0470	0.18
500	Compact Round Stranded	26.3	1.5	17	1.3	2.0	4.5	94	10.7	0.0366	0.19
630	Stranded	30.2	1.5	17	1.3	2.1	4.5	98	12.3	0.0283	0.21
800		34.0	1.5	17	1.3	2.2	4.5	102	14.4	0.0221	0.22
1000		38.7	1.5	17	1.3	2.3	4.5	108	17.0	0.0176	0.24
1200		41.8	1.5	17	1.3	2.3	4.5	111	19.0	0.0151	0.26
1600	Segment Stranded (Miliken)	48.1	1.5	17	1.3	2.5	4.5	119	23.5	0.0113	0.28
2000		54.3	1.5	17	1.3	2.6	4.5	125	28.0	0.0090	0.31
2500		63.0	1.5	17	1.3	2.8	4.5	134	34.5	0.0072	0.34

290/500 (525) kV

4.11 87/161 (170) kV with Lead Sheath

Lead Sheath

	Conductor	1	Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Lead Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Q∕km	μF7 km
300		20.4	1.5	17	1.3	2.5	4.5	80	12.5	0.0601	0.16
400		23.2	1.5	17	1.3	2.6	4.5	83	14.0	0.0470	0.18
500	Compact Round	26.3	1.5	17	1.3	2.7	4.5	86	15.7	0.0366	0.19
630	Stranded	30.2	1.5	17	1.3	2.8	4.5	90	18.0	0.0283	0.21
800		34.0	1.5	17	1.3	2.9	4.5	94	20.5	0.0221	0.22
1000		38.7	1.5	17	1.3	3.0	4.5	100	23.8	0.0176	0.24
1200		41.8	1.5	17	1.3	3.2	4.5	103	26.7	0.0151	0.26
1600	Segment Stranded (Miliken)	48.1	1.5	17	1.3	3.4	4.5	110	32.2	0.0113	0.28
2000		54.3	1.5	17	1.3	3.6	4.5	116	37.9	0.0090	0.31
2500		63.0	1.5	17	1.3	3.7	4.5	124	44.9	0.0072	0.34

Copper Wire Shield

Construction

- Copper Conductor XLPE Insulation
- Copper Wire Shield PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Direct Ruried	Dino Duct	In Air			
Direct buried	ripe Duci	Trefoil	Flat (S=2D)		
591	553	684	765		
673	629	789	887		
766	713	907	1027		
871	829	1043	1193		
977	928	1181	1367		
1143	1081	1415	1639		
1232	1208	1535	1790		
1404	1382	1765	2100		
1554	1523	1973	2384		
1636	1603	2077	2510		
	673 766 871 977 1143 1232 1404 1554	591 553 673 629 766 713 871 829 977 928 1143 1081 1232 1208 1404 1382 1554 1523	Direct Buried Pipe Duct Trefoil 591 553 684 673 629 789 766 713 907 871 829 1043 977 928 1181 1143 1081 1415 1232 1208 1535 1404 1382 1765 1554 1523 1973		

Constructional Data (Nominal Values)

	Conductor		Thickness of	Thickness of	Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.		Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg / m	Ω/ km	μF7 km
300		20.4	1.5	17	1.3	1.5 x 80	4.5	72	6.3	0.0601	0.21
400		23.2	1.5	17	1.3	1.5 x 80	4.5	75	7.2	0.0470	0.23
500	Compact Round Stranded	26.3	1.5	17	1.3	1.5 x 80	4.5	79	8.6	0.0366	0.25
630	Stranded	30.2	1.5	17	1.3	1.5 x 80	4.5	83	10.1	0.0283	0.28
800		34.0	1.5	17	1.3	1.5 x 80	4.5	87	12.0	0.0221	0.30
1000		38.7	1.5	17	1.3	1.5 x 80	4.5	92	14.4	0.0176	0.33
1200	Constant Characteria	41.8	1.5	17	1.3	1.5 x 80	4.5	98	16.7	0.0151	0.36
1600	Segment Stranded (Miliken)	48.1	1.5	17	1.3	1.5 x 80	4.5	105	20.9	0.0113	0.40
2000		54.3	1.5	17	1.3	1.5 x 80	4.5	112	25.4	0.0090	0.44
2500		63.0	1.5	17	1.3	1.5 x 80	4.5	118	31.1	0.0072	0.34

290/500 (525) kV

4.13 127/230 (245) kV with Aluminum Sheath

Aluminum Sheath

~			1.1.1	
(n	str	ucti	n
0		Ju	ucu	

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath


Continuous Current Ratings for Single Circuit (A)

Direct Ruried	Dino Duct				
Direct buried	ripe Duci	Trefoil	Flat (S=2D)		
657	641	757	836		
745	725	866	962		
843	822	989	1111		
943	916	1116	1268		
1090	1057	1310	1505		
1165	1131	1403	1631		
1316	1322	1596	1902		
1438	1440	1758	2143		
1512	1514	1849	2254		
	745 843 943 1090 1165 1316 1438	657 641 745 725 843 822 943 916 1090 1057 1165 1131 1316 1322 1438 1440	Direct Buried Pipe Duct Trefoil 657 641 757 745 725 866 843 822 989 943 916 1116 1090 1057 1310 1165 1131 1403 1316 1322 1596 1438 1440 1758		

	Conductor		Thickness of	Thickness of Insulation	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	Constitution
Cross-Sectional Area			Conductor Screen Approx.		Insulation Screen Approx.	Aluminum Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²							mm		kg / m		μF/ km
400		23.2	1.5	23.0	1.3	2.2	4.5	104	11.0	0.0470	0.14
500	Compact Round	26.3	1.5	23.0	1.3	2.3	4.5	108	12.1	0.0366	0.15
630	Stranded	30.2	1.5	23.0	1.3	2.4	4.5	112	14.2	0.0283	0.17
800		34.0	1.5	23.0	1.3	2.4	4.5	116	15.8	0.0221	0.18
1000		34.0	1.5	23.0	1.3	2.4	4.5	116	15.8	0.0221	0.18
1200		41.8	1.5	23.0	1.3	2.6	5.0	126	21.5	0.0151	0.21
1600	Segment Stranded - (Miliken) -	48.1	1.5	23.0	1.3	2.7	5.0	133	26.0	0.0113	0.23
2000		54.3	1.5	23.0	1.3	2.8	5.0	139	30.7	0.0090	0.24
2500		63.0	1.5	23.0	1.3	3.0	5.0	148	37.8	0.0072	0.27

4.14 127/230 (245) kV with Lead Sheath

Lead Sheath

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Lead Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Ω/ km	μF7 km
400		23.2	1.5	23.0	1.3	3.2	4.5	96	17.9	0.0470	0.14
500	Compact Round	26.3	1.5	23.0	1.3	3.3	4.5	100	19.7	0.0366	0.15
630	Stranded	30.2	1.5	23.0	1.3	3.4	4.5	104	22.1	0.0283	0.17
800		34.0	1.5	23.0	1.3	3.5	4.5	108	24.8	0.0221	0.18
1000		38.7	1.5	23.0	1.3	3.6	5.0	114	28.8	0.0176	0.20
1200		41.8	1.5	23.0	1.3	3.9	5.0	118	32.3	0.0151	0.21
1600	- Segment Stranded - - (Miliken) - 	48.1	1.5	23.0	1.3	4.1	5.0	124	38.2	0.0113	0.23
2000		54.3	1.5	23.0	1.3	4.2	5.0	130	43.8	0.0090	0.24
2500		63.0	1.5	23.0	1.3	4.4	5.0	148	52.5	0.0072	0.27

4.15 127/230 (245) kV with Copper Wire Shield

Copper Wire Shield

Construction

- Copper Conductor XLPE Insulation
- Copper Wire Shield PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Dino Duct				
Cross-sectional Area (mm)	Direct buried	Pipe Duct	Trefoil	Flat (S=2D)		
400	668	634	779	863		
500	759	719	895	998		
630	864	842	1031	1159		
800	970	944	1167	1326		
1000	1131	1100	1390	1583		
1200	1221	1185	1512	1733		
1600	1397	1354	1750	2040		
2000	1543	1489	1950	2309		
2500	1623	1566	2051	2429		

	Conductor		Thickness of	Thickness of	Thickness of	Diameter &	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	Constitution
Cross-Sectional Area			Conductor Screen Approx.		Insulation Screen Approx.	Number of Copper Wires	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm x No.	mm	mm	kg / m	Ω/km	μF/ km
400		23.2	1.5	23.0	1.3	1.5 x 80	4.5	91	10.0	0.0470	0.14
500	Compact Round	26.3	1.5	23.0	1.3	1.5 x 80	4.5	94	11.2	0.0366	0.15
630	Stranded	30.2	1.5	23.0	1.3	1.5 x 80	4.5	98	12.8	0.0283	0.17
800		34.0	1.5	23.0	1.3	1.5 x 80	4.5	102	14.8	0.0221	0.18
1000		38.7	1.5	23.0	1.3	1.5 x 80	5.0	107	17.2	0.0176	0.20
1200		41.8	1.5	23.0	1.3	1.5 x 80	5.0	110	19.2	0.0151	0.21
1600	- Segment Stranded - - (Miliken) -	48.1	1.5	23.0	1.3	1.5 x 80	5.0	116	23.3	0.0113	0.23
2000		54.3	1.5	23.0	1.3	1.5 x 80	5.0	123	27.6	0.0090	0.24
2500		63.0	1.5	23.0	1.3	1.5 x 80	5.0	132	33.9	0.0072	0.27

Aluminum Sheath

Construction

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Direct Ruried	Dino Duct				
Direct buried	ripe Duci	Trefoil	Flat (S=2D)		
832	822	976	1092		
928	917	1095	1239		
1072	1060	1284	1467		
1149	1136	1383	1595		
1299	1325	1577	1859		
1419	1446	1726	2089		
1491	1519	1814	2195		
	928 1072 1149 1299 1419	832 822 928 917 1072 1060 1149 1136 1299 1325 1419 1446	Direct Buried Pipe Duct Trefoil 832 822 976 928 917 1095 1072 1060 1284 1149 1136 1383 1299 1325 1577 1419 1446 1726		

Constructional Data (Nominal Values)

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Aluminum Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²											µF7 km
630	Compact Round	30.2	1.5	27.0	1.3	2.5	6	124	16.5	0.0283	0.15
800	Stranded	34.0	1.5	27.0	1.3	2.6	6	128	18.7	0.0221	0.16
1000		38.7	1.5	27.0	1.3	2.7	6	134	21.6	0.0176	0.18
1200		41.8	1.5	27.0	1.3	2.8	6	137	23.8	0.0151	0.19
1600	Segment Stranded (Miliken)	48.1	1.5	27.0	1.3	2.9	6	144	28.4	0.0113	0.20
2000		54.3	1.5	27.0	1.3	3.0	6	150	33.1	0.0090	0.22
2500		63.0	1.5	27.0	1.3	3.2	6	160	40.5	0.0072	0.24

290/500 (525) kV

4.17 190/345 (362) kV with Lead Sheath

Lead Sheath

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Lead Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²											μF/ km
630	Compact Round	30.2	1.5	27.0	1.3	3.4	6.0	113	23.5	0.0283	0.15
800	Stranded	34.0	1.5	27.0	1.3	3.5	6.0	118	27.3	0.0221	0.16
1000		38.7	1.5	27.0	1.3	3.6	6.0	123	30.7	0.0176	0.18
1200		41.8	1.5	27.0	1.3	3.8	6.0	127	33.8	0.0151	0.19
1600	Segment Stranded - (Miliken) -	48.1	1.5	27.0	1.3	4.0	6.0	133	40.3	0.0113	0.20
2000		54.3	1.5	27.0	1.3	4.2	6.0	140	46.7	0.0090	0.22
2500		63.0	1.5	27.0	1.3	4.4	6.0	148	55.3	0.0072	0.24

Aluminum Sheath

Construction

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Pipe Duct				
Cross-sectional Area (mm)	Direct Durieu	ripe Duci	Trefoil	Flat (S=2D)		
630	825	812	967	1081		
800	920	907	1090	1231		
1000	1062	1046	1279	1458		
1200	1139	1120	1372	1581		
1600	1292	1304	1569	1842		
2000	1410	1422	1711	2067		
2500	1480	1493	1796	2170		
3000	1570	1582	1904	2300		

Constructional Data (Nominal Values)

	Shape Compact Round Stranded	Diameter mm 30.2	Conductor Screen Approx. mm 1.5	Thickness of Insulation mm	Insulation Screen Approx. mm	Aluminum Sheath mm	Thickness of Outer Sheath	Outer Diameter of Cable	Weight of Cable	Conductor Resistance at 20°C	
630 (mm							
		30.2	15						kg / m	Ω/ km	
000	Strandad		1.5	29.0	1.3	2.6	6	128	17.5	0.0283	0.14
800	Stranueu	34.0	1.5	29.0	1.3	2.7	6	132	19.6	0.0221	0.15
1000		38.7	1.5	29.0	1.3	2.8	6	138	22.5	0.0176	0.17
1200		41.8	1.5	29.0	1.3	2.8	6	141	24.6	0.0151	0.18
1600 Se	Segment Stranded	48.1	1.5	29.0	1.3	3.0	6	150	29.9	0.0113	0.19
2000	(Miliken)	54.3	1.5	29.0	1.3	3.1	6	157	34.7	0.0090	0.20
2500		63.0	1.5	29.0	1.3	3.3	6	167	42.0	0.0072	0.23
3000		69.0	1.5	29.0	1.3	3.3	6	174	46.7	0.0060	0.24

290/500 (525) kV

4.19 220/400 (420) kV with Lead Sheath

Lead Sheath

	Conductor			Thickness of		Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	Capacitance
Cross-Sectional Area			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Lead Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	Capacitance
mm²		mm	mm	mm	mm	mm	mm	mm	kg / m	Q∕km	μF/ km
630	Compact Round	30.2	1.5	29.0	1.3	3.5	6.0	118	27.0	0.0283	0.14
800	Stranded	34.0	1.5	29.0	1.3	3.6	6.0	122	28.6	0.0221	0.15
1000		38.7	1.5	29.0	1.3	3.8	6.0	127	33.5	0.0176	0.17
1200		41.8	1.5	29.0	1.3	3.9	6.0	131	36.0	0.0151	0.18
1600	Segment Stranded	48.1	1.5	29.0	1.3	4.2	6.0	140	43.1	0.0113	0.19
2000	(Miliken)	54.3	1.5	29.0	1.3	4.4	6.0	146	50.0	0.0090	0.20
2500		63.0	1.5	29.0	1.3	4.5	6.0	153	57.0	0.0072	0.23
3000		69.0	1.5	29.0	1.3	3.3	6.0	174	64.1	0.0060	0.24

Aluminum Sheath

Construction

- Copper Conductor XLPE Insulation
- Aluminum Sheath PE (or PVC) Outer Sheath

Continuous Current Ratings for Single Circuit (A)

Cross-Sectional Area (mm ²)	Direct Buried	Pipe Duct				
Cross-sectional Area (mm)	Direct Durieu	ripe Duci	Trefoil	Flat (S=2D)		
800	910	890	1080	1221		
1000	1052	1036	1270	1447		
1200	1128	1110	1361	1565		
1600	1281	1284	1555	1825		
2000	1400	1400	1700	2050		
2500	1470	1470	1785	2150		
3000	1560	1558	1895	2280		

Constructional Data (Nominal Values)

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional			Conductor Screen Approx.	Insulation	Insulation Screen Approx.	Aluminum Sheath	Outer Sheath	of Cable	Cable	Resistance at 20°C	
mm²											
800	Compact Round Stranded	34.0	2.5	34.0	2.0	3.0	6	148	24.6	0.0221	0.14
1000		38.7	2.5	32.0	2.0	3.0	6	146	26.2	0.0176	0.16
1200		41.8	2.0	32.0	2.0	3.0	6	150	28.6	0.0151	0.16
1600	Segment Stranded	48.1	2.0	30.0	2.0	3.1	6	153	32.1	0.0113	0.19
2000	(Miliken)	54.3	2.0	30.0	2.0	3.2	6	158	36.8	0.0090	0.20
2500		63.0	2.0	30.0	2.0	3.3	6	168	43.6	0.0072	0.23
3000		69.0	2.0	30.0	2.0	3.5	6	178	48.8	0.0060	0.24

290/500 (525) kV

4.21 290/500 (550) kV with Lead Sheath

Lead Sheath

	Conductor		Thickness of	Thickness of	Thickness of	Thickness of	Thickness of	Outer Diameter	Weight of	Max. DC Conductor	
Cross-Sectional Area			Conductor Screen Approx.			Aluminum Sheath	Outer Sheath		Cable	Resistance at 20°C	Capacitance
mm²											
800	Compact Round Stranded	34.0	2.5	34.0	2.0	4.3	6.0	136	37.5	0.0221	0.14
1000		38.7	2.5	32.0	2.0	4.3	6.0	134	38.7	0.0176	0.16
1200		41.8	2.0	32.0	2.0	4.4	6.0	137	41.6	0.0151	0.16
1600	Segment Stranded	48.1	2.0	30.0	2.0	4.5	6.0	140	46.0	0.0113	0.19
2000	(Miliken)	54.3	2.0	30.0	2.0	4.5	6.0	147	51.7	0.0090	0.20
2500		63.0	2.0	30.0	2.0	4.9	6.0	154	60.0	0.0072	0.23
3000		69.0	2.0	30.0	2.0	5.1	6.0	162	68.1	0.0060	0.24

5.00 Correction Factors for Various Laying Conditions

To determine current capacity for the various laying conditions than those indicated on the every tables, multiply table values by the correction factors shown below.

Correction Factors for Various Ambient Air Temperature

Air Temperature (°C)	20°C	25℃	30°C	35 ℃	40°C	45℃	50℃
Rating Factor	1.2	1.16	1.10	1.05	1.0	0.94	0.88

Correction Factors for Various Ground Temperature

Air Temperature (°c)	15°C	20℃	25℃	30 °C	35℃	40°C	45℃
Rating Factor	1.08	1.04	1.0	0.96	.091	0.87	0.83

Correction Factors for Various Thermal Resistivity of Ground

Thermal Resistivity of Soil (℃m/W)	0.7	1.0	1.2	1.5	2.0	2.5	3.0
Rating Factor	1.14	1.0	0.93	0.84	0.74	0.67	0.61

Correction Factors for Various Depth of Laying

Depth of Laying (m)	Rating Factor
0.50 ~ 0.70	1.09
0.71 ~ 0.90	1.05
0.91 ~ 1.10	1.03
1.11 ~ 1.30	1.01
1.31 ~ 1.50	1.00

6.00 Permissible Short Circuit Currents

The permissible short circuit current of a cable is determined by the maximum permissible conductor temperature and by the duration of the short circuit current. At high peak currents, the dynamic forces between the conductors must be taken into account.

The short circuit capacity of the conductor and metallic shield of a cable are related principally to their heat capacities and are limited by the maximum temperature permitted under short circuit XLPE power are as follow.

From the two graphs, the short circuit capacity of copper or aluminum conductors (based on a temperature rise from 90 $^{\circ}$ C to 250 $^{\circ}$ C) can be determined.

Logarithmic interpolation between the curves will give estimated values for the various duration.

The curves may be used also to determine the amount of conducting material required to carry a known short circuit current for a given duration.

Copper Conductor

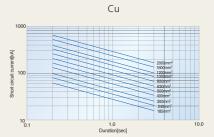
According to IEC 60949 curves based on formula

$$Is = \varepsilon \times 226 \frac{S}{\sqrt{t}} \sqrt{\ln \frac{\theta_f + 234.5}{\theta_i + 234.5}}$$

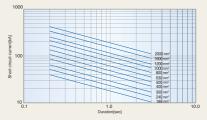
where,

- Is = Permissible Short Circuit Current (A)
- ε = Factor to allow for heat loss into the Adjacent Components
- S = Cross-Sectional Area of Conductor (mm²)
- t = Duration of Short Circuit (s)
- $\theta_{\rm f}$ = Final Temperature (250 °C)

 θ_{i} = Initial Temperature (90 °C)


Aluminum Conductor

According to IEC 60949 curves based on formula

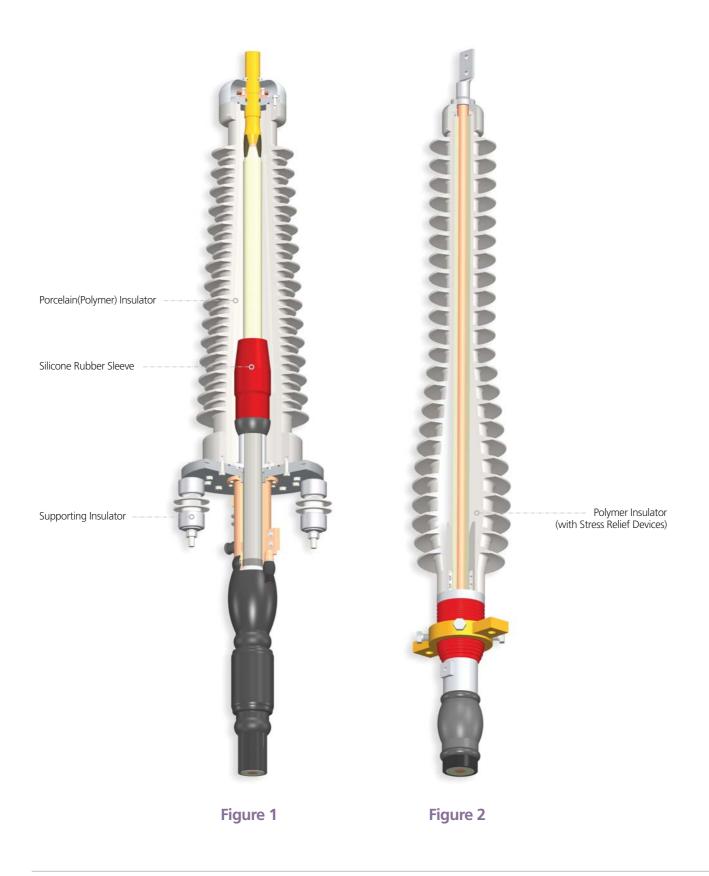

$$Is = \varepsilon \times 148 \frac{S}{\sqrt{t}} \sqrt{\ln \frac{\theta_f + 228}{\theta_f + 228}}$$

where,

- Is = Permissible Short Circuit Current (A)
- ϵ = Factor to allow for heat loss into the Adjacent Components
- S = Cross-Sectional Area of Conductor (mm2)
- t = Duration of Short Circuit (s)
- $\theta_{\rm f}$ = Final Temperature (250 °C)
- θ_{i} = Initial Temperature (90 °C)

Al

7.00 Accessories for EHV Cable Systems


Real

LS Cable has developed and manufactured a wide range of terminations and joints for Extra High Voltage(EHV) cable system since 1983. Prefabricated terminations and tape molded joints are installed for 154kV cable system in domestic market. A new advanced accessories, which is called prefabricated and premolded joints, were developed and supplied to many countries in the world. Cable systems from 132kV up to 400kV has been certified through the type test by many international independent institutes (KEMA, CESI, KERI).

Pre-qualification tests for 345kV and 400kV cable systems in accordance with latest IEC standard were carried out successfully by the KEMA and KERI.

- 7.01 Outdoor Terminations for 66kV~110kV
- 7.02 Outdoor Terminations for 132kV~275kV
- 7.03 Outdoor Terminations for 345kV~500kV
- 7.04 SF₆ Gas Insulated Terminations
- 7.05 Oil-Immersed Terminations
- 7.06 Pre-Moulded Joint(PMJ)
- 7.07 Link Box
- 7.08 Transition Joint
- 7.09 Optical Cable & Joint

7.01 Outdoor Terminations for 66kV~110kV

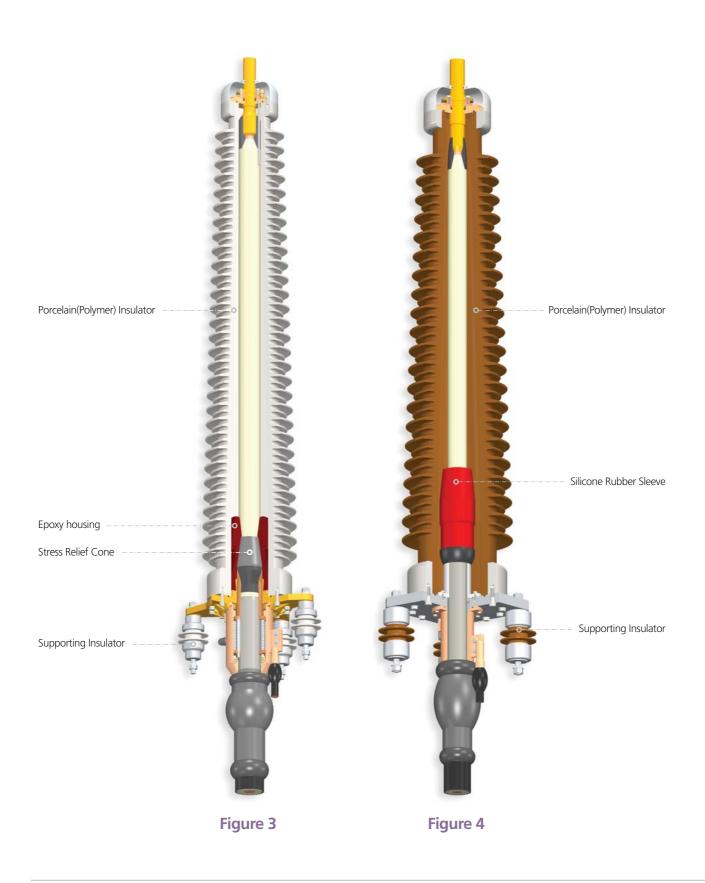
The outdoor terminations for 66~110kV are classified on two types. One is based on silicone rubber sleeve(so called Pre-moulded type, Figure1). The other is based on silicone rubber housing(so called dry type, Figure2). Pre-moulded silicone rubber sleeve is designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. This uses elastic retention of silicone material itself. The termination is filled with an insulating compound up to a level where the electric field is substantially reduced. The termination base plate and the cable's metallic sheath are electrically insulated from the

supporting structure by means of stand off insulators designed to withstand both mechanical and electrical stresses in services. Upon request of the customer, either porcelain or composite hollow insulator can be supplied. And the insulator can be supplied in brown or grey color. The maximum allowable cable conductor size is 3000mm²(6000kcmil). The latter uses pre-moulded silicone housing with built in sleeve. They completely free from any Liquid insulating materials. The high electrical field area of the termination surface covered with skirts.

The housing is whole preformed and can be supplied in grey color. This has advantage like easier installation. The maximum allowable cable conductor size 3000mm²(6000kcmil). The main insulation components are fully examined and tested in the factory.

Max. Voltage	BIL	Max. Height	Max. Weight	Max. Creepage Distance
kV				mm
72.5	325	1000	100	2500
123	550	1500	200	4300

Rating & Dimension(Based on pre-moulded type)


Rating & Dimension(Based on Dry type)

Max. Voltage		Max. Height	Max. Weight	Max. Creepage Distance
kV				mm
72.5	325	980	100	2500
123	550	1350	200	4300

Selection of insulators with respect to polluted conditions (Based on IEC60815)

Pollution	I (Light)	∏ (Medium)	
Min. Norminal Specific Creepage Distance		20mm/kV	

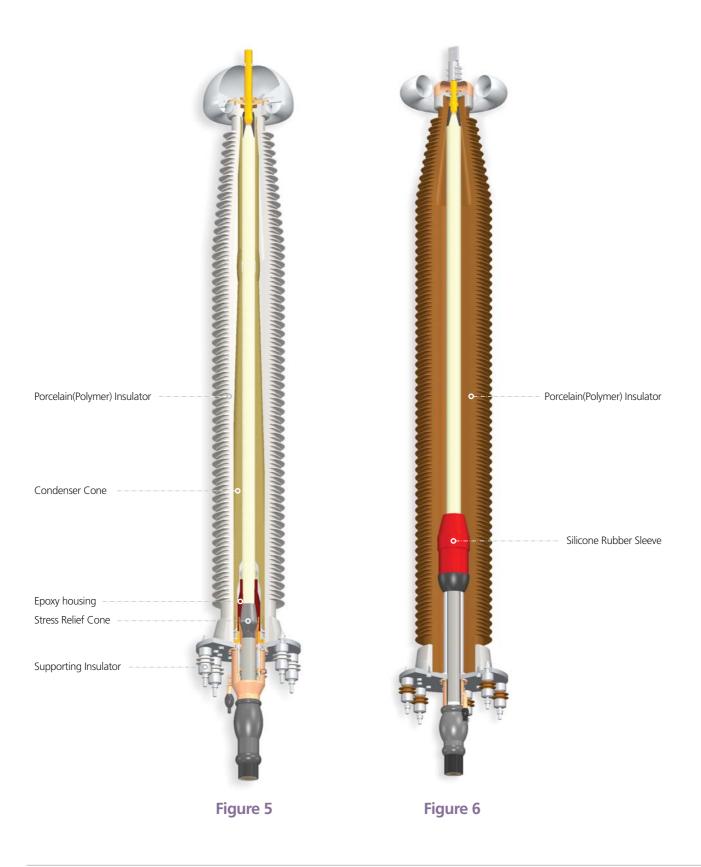
7.02 Outdoor Terminations for 132kV~275kV

The outdoor termination for 132~275kV is classified into two types. One is based on the EPR-based rubber stress relief cone with an epoxy housing(so called pre-fabricated type, figure3). The other is based on the silicone rubber sleeve(so called pre-molded type, figure4).

The former uses mechanical devices to maintain the interface pressure. The latter uses elastic retention of silicone material itself. Pre-moulded silicone rubber sleeve is designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration.

The termination base plate and the cable's metallic sheath are

electrically insulated from the supporting structure by means of stand off insulators designed to withstand both mechanical and electrical stresses in services. Upon request of the customer, either porcelain or composite hollow insulator can be supplied. And the insulator can be supplied in brown or grey colour. In addition upon request of the customer, arcing horn and shield ring can be supplied. The termination is filled with an insulating compound up to a level where the electric field is substantially reduced. The main insulation components are fully examined and tested in the factory. The maximum allowable cable conductor size is 3000mm²(6000kcmil).


Rating & Dimension(Based on pre-moulded type)

Max. Voltage	BIL	Max. Height	Max. Weight	Max. Creepage Distance
kV				
145	650	2410	700	5000
170	750	2410	800	6000
275	1050	3500	900	8400

Selection of insulators with respect to polluted conditions (Based on IEC60815)

Pollution	I (Light)	II (Medium)	 IV(Very Heavy)
Min. Norminal Specific Creepage Distance		20mm/kV	

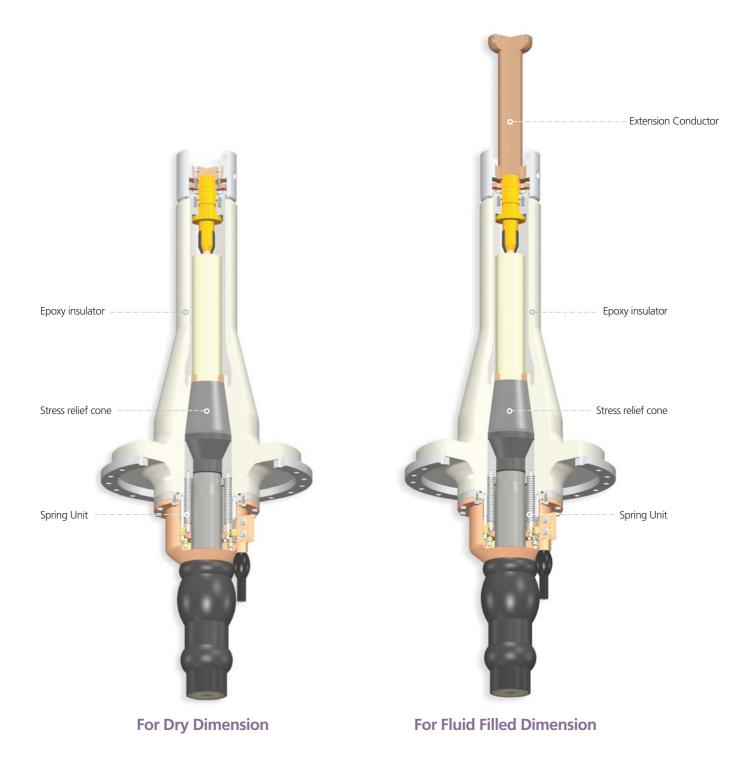
7.03 Outdoor Terminations for 345kV~500kV

The outdoor termination for 345~500kV is classified into two types. One is based on the EPR-based stress relief cone with the epoxy housing and the oil-impregnated cylindrical capacitor cone is added to secure the uniform longitudinal voltage distribution all along the termination(so called condenser cone type, figure 5). The other is based on silicone rubber sleeve(so called pre-molded type, figure 6).

The former uses mechanical devices to maintain the interface pressure and the latter uses elastic retention of silicone material itself.

Pre-moulded silicone rubber sleeve is designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration.

The termination base plate and the cable's metallic sheath are electrically insulated from the supporting structure by means of stand off insulators designed to withstand both mechanical and electrical stresses in services. Upon request of the customer, either porcelain or composite hollow insulator can be supplied. And the insulator can be supplied in brown or grey colour. In addition upon request of the customer, arcing horn and shield ring can be supplied. The termination is filled with an insulating compound up to a level where the electric field is substantially reduced. The main insulation components are fully examined and tested in the factory. The maximum allowable cable conductor size is 3000mm²(6000kcmil).


Rating & Dimension(Based on pre-moulded type)

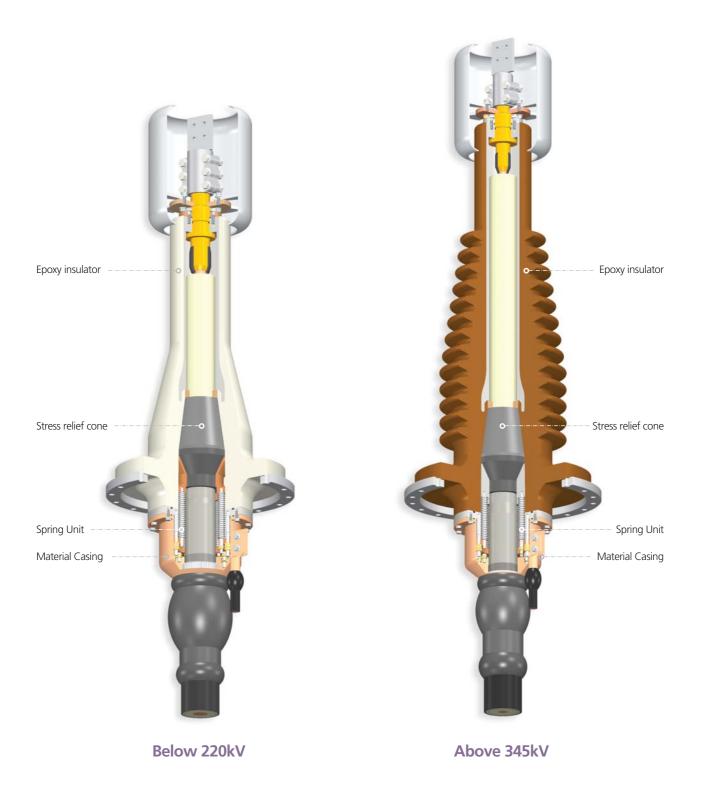
Max. Voltage	BIL	Max. Height	Max. Weight	Max. Creepage Distance
kV				mm
362	1175	4300	1700	13000
420	1425	4300	2000	14500
550	1550	5000	2500	20000

Selection of insulators with respect to polluted conditions (Based on IEC60815)

Pollution	I (Light)	∏ (Medium)	 IV(Very Heavy)
Min. Norminal Specific Creepage Distance		20mm/kV	

7.04 SF₆ Gas Insulated Terminations

The construction of SF6 gas insulated terminations is based on the EPR(Ethylene-Propylene Rubber) or LSR(Liquid Silicone Rubber) - based stress relief cone and the epoxy resin housing. They are mechanical devices to maintain the interface pressure. Stress relief cone and mechanical devices are designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration.


They also use epoxy insulating plate to isolate between cable sheath and GIS chamber. The SVLs(Sheath Voltage Limiter) can be installed to protect epoxy insulating plate from switching impulse. Upon request

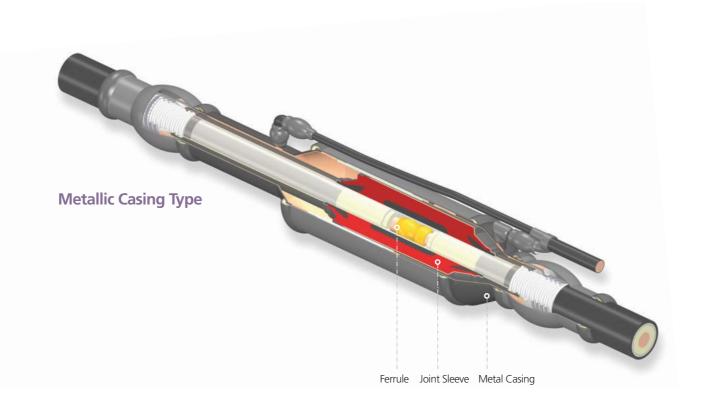
of the customer, we can supply three type of leading conductors. That is normal type, blind-ended type, plug-in type. Design and scope of delivery are fully complying with IEC60859, IEC62271-209 and possibly adjusted to various needs of customers. The main insulation components are fully examined and tested in the factory. They are currently available at the voltage range up to 500kV and the maximum allowable cable conductor size is 3000mm²(6000kcmil).

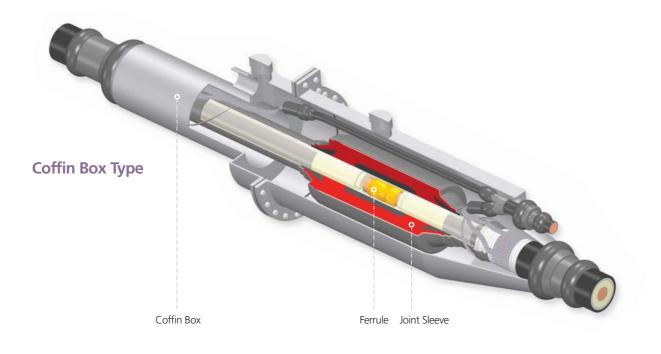
Max. Voltage	BIL	Max. Height	Dimension of base plate	Max. weight
kV				
72.5	325	583	270	120
123	550	470	320	130
145	650	470	320	150
170	750	470	320	170
245	1050	620	582	280
420	1425	960	640	500
550	1550	960	640	600

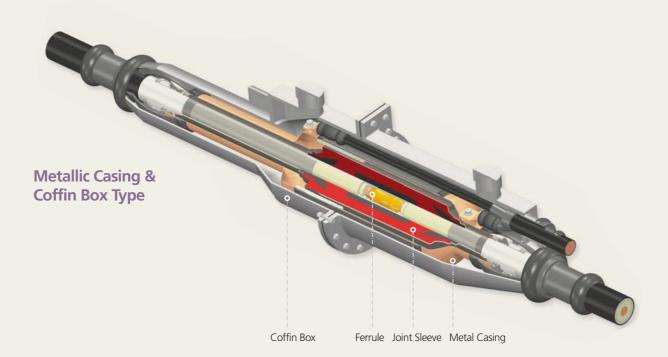
Rating & Dimension(Based on IEC 60859)

7.05 Oil-Immersed Terminations

The construction of oil immersed terminations is based on the EPR(Ethylene-Propylene Rubber) or LSR(Liquid Silicone Rubber) - based stress relief cone and the epoxy housing. This is similar to gas insulated sealing end. But they use shield ring with insulating paper or epoxy insulated layer to prevent flashover in transformer. They are mechanical devices to maintain the interface pressure. Stress relief cone and mechanical devices are designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. The main insulation components are fully examined and tested in the

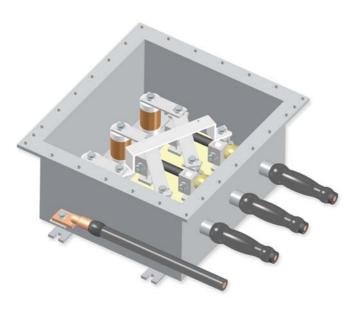



factory. Dimensions of base paste are complying with various needs of customers. They are currently available at the voltage range up to 500kV and the maximum allowable size is 3000mm²(6000kcmil).


Max. Voltage		Max. Height	Dimension of base plate	Max. weight
kV				
72.5	325	686	270	130
123	550	841	320	140
145	650	841	320	180
170	750	841	320	180
245	1050	1040	582	280
420	1425	1440	640	520
550	1550	1440	640	620

Rating & Dimension

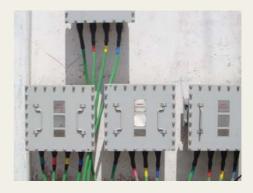
7.06 Pre-Moulded Joint(PMJ)


The single piece pre-moulded type rubber joint is based on silicone insulation embedded with two semi-conductive stress relief cones and one high voltage electrode. Without any mechanical devices, the interface pressure is safely maintained with elastic retention of material itself. Semi-conductive stress relief cones and electrode are designed to fit with controlled interference over the cable insulation and is able to follow the cable' s diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. Upon request of the customer, outer casing is designed(metalic casing, coffin box, and metalic casing with coffin box). They use filling compound in outer casing. In case of sheath sectionalizing joint, we use insulating plate made of epoxy or FRP to disconnect between cable sheathes. The main insulation components and outer casing components are factory-made and fully tested before delivering to the site. The cost-efficient and simplified design along with easy and fast installation meets the various needs of customers. Installation tools can be provided if requested by customers. They are currently available at the voltage range up to 500kV and the maximum allowable conductor size is 3000mm²(6000kcmil).

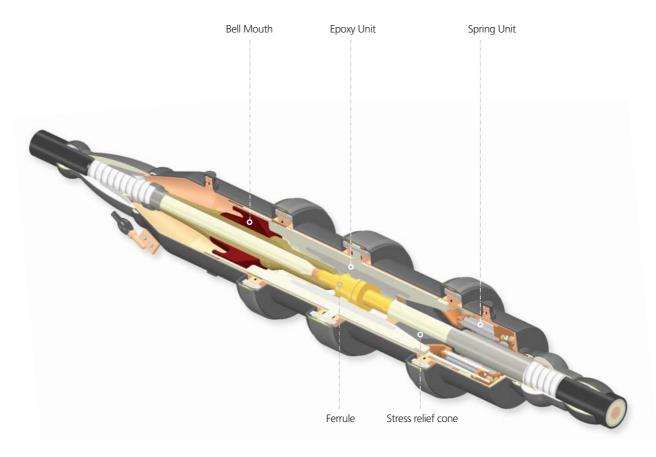
Rating & Dimension(Based on Coffin Box Type)

Max. Voltage	Max. Lenght	Max. Outer Dia.	Max. Weight
kV	mm	mm	mm
72.5	2000	500	90
123	2000	500	120
145~170	2000	500	150
245~300	2200	550	200
362~420	2600	700	300
550	2700	700	400

7.07 Link Box



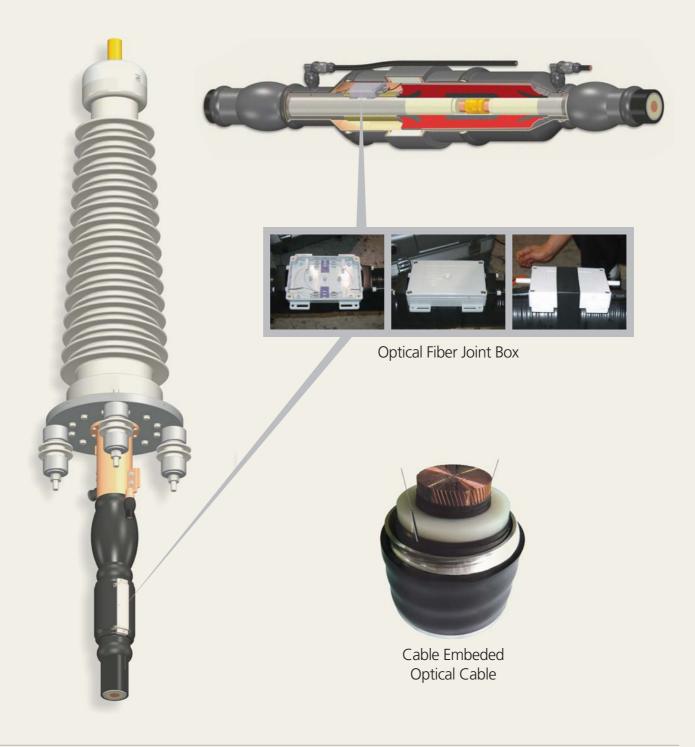
Buried Type : Link Box for cross bonding(3-1Way)


Gantry Mounted Type : Link Box for Earthing(3-1Way)

Link Boxes are used at the end of cable termination to gain easy access to the cable metallic sheath and to limit the transient over-voltage induced on the metallic sheath by the lighting, switching operations and fault currents. Cross bonding(C.B.) link boxes allow metallic sheath to be transposed at cable joints with surge voltage suppression and reduction of circulation currents. Sheath voltage limiters(SVLs) in link box are the gapless ZnO arresters, which have the insulation resistance above 100M Ω at test voltage so that the sheath insulation can be checked without disconnection SVLs.

Standard Product	Box Type	Approx. Size	Bonding Lead	Approx. Weight
Link Box for Earthing(1-1Way)	Gantry Mounted / Buried	150X150 200X200	Single Core	15 30
Link Box for Earthing(3-1Way)	Gantry Mounted / Buried	300X500 350X600	Single Core	30 50
Link Box with SVLs(3-1Way)	Gantry Mounted / Buried	450X500 500X550	Single Core	40 70
Link Box for Cross-Bonding .(3-1Way)	Gantry Mounted / Buried	500X550 550X600	Concentric	50 80
Link Box for Bonding & Earthing (3-1Way)	Buried	700X500	Concentric	80
Link Box for Earthing with SVL (3-1way)	Buried	700X500	Concentric	50

7.08 Transition Joint

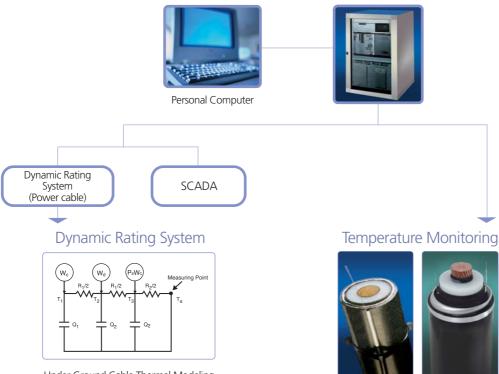

The transition joint connects between existing oil-filled cables and extruded dielectric cables. They comprise the stop joint with oil-impregnated paper insulation and epoxy bell mouth at side of oil-filled cables. They also comprise prefabricated type joint with stress relief cone based EPR(Ethylene-Propylene Rubber) and mechanical devices at side of extruded dielectric cables. They are designed to fit with controlled interference over the cable insulation and is able to follow the cable's diameter variations still guaranteeing under any service condition a sufficient positive pressure to control the electric field concentration. Each components fully examined and tested in the factory. They are currently available at the voltage range up to 300kV and the maximum allowable cable conductor size is 3000mm²(6000kcmil).

Rating & Dimension

Max. Voltage	Max. Lenght	Max. Outer Dia.	Max. Weight
kV			mm
145	1800	290	220
170	1800	320	250
245	2000	360	300

7.09 Optical Cable & Joint

These type for power cable are very useful to measure distributed temperature. Especially optical cable located the sensing fiber to the cable core provides a better indication of conductor temperature. We can supply optical joint to connect optical fiber cable.


8.00 Monitoring & Diagnosis System

8.01 Real Time Thermal Monitoring-Underground Power Cable System

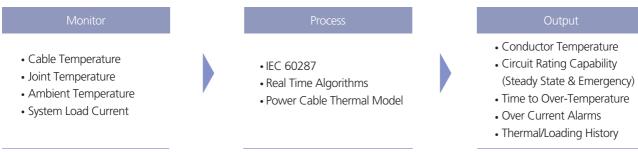
8.02 On-Site PD Detection System

8.01 Real Time Thermal Monitoring-Underground Power Cable System

Real time thermal monitoring cooperated with DTS* system using optical fiber as the sensor provides high efficiency and reliability of power cable system.

Under Ground Cable Thermal Modeling

Thermal models and real-time temperature measurement can provide dynamic rating system. And this system allows qualification of actual cable capacity, cable conditions and environmental parameters critical to the stability and longevity of the cable system.



Right : Sensor fiber embedded cable (under the sheath)

Left : Sensor fiber attached cable

These types of power cable are very useful to measure distributed temperature. Especially, the right cable, located the sensing fiber closer to the cable core, provides a better indication of conductor temperature.

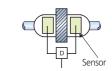
Dynamic Cable Rating Systems (R-TAS™)

*Distributed Temperature Sensor : Supplied by Sensa, UK. For more information, refer to www.sensa.org

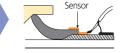
8.02 On-Site PD Detection System

On-Site PD Detection based on high frequency PD measurement can be a highly effective method to increase the reliability of XLPE power cable system not only as afterlaying test but also as on-site insulation diagnosis.

Characteristics of On-Site PD Detection System


- High sensitivity by tuning low noise frequency range
- System configuration without line-off
- Easy installation of PD sensor
- PD localization using PD attenuation property

Sensor Type


Outer Type Capacitive Sensor

- Installation on Outer Sheath of Joint (Applicable only for Insulating Joint)
- Measuring Frequency Range : 1MHz ~ 50MHz

Inner Type Capacitive Sensor

- Installation on Semi-Conductive Layer in Joints
- Measuring Frequency Range : 2 ~ 20MHz

9.01 Type Test/Pre-Qualification Test Certificates

9.02 ISO Certificates

9.01 Type Test/Pre-Qualification Test Certificates

		KEMA
INSPECT	ION REPOR	۲T.
Report number Chent	70340034-T0T 03-3 LG Cable LIS P.O. Box 720-708 190, Googdan-Dorg Guard Capacity	
Reference	e-mail dated April 21	
Concerning Date Place Objects	type tests May, 7 60 July 22, 25 LG Test Laboratory 190/345 kV per-fabr 190/345 kV pro-fabr 190/345 kV 5016 pas 190/345 kV 5016 pas	003 Guni Oliy Konsa Isolate cable port in cubicot termination sublete power cable, 1 x 2500 semm PCC visual
Manufacturer	CuXLPE/Al sheath LG Cable LM, Gum	PVC A City, Korea
REQUIREMENT The requirement	S s as mentioned in the st	andard IEC 62067, 2001-10.
TEST PROGRAM The programme i mentioned in IEC For the programm	AME vas specified by the clie 62007, 2001-10, ne reference la made to	ent and consisted of the type tests as page 7.
SUMMARY AND The lost results o The cable and the	blained relate only to th	te work ordered and to the material tested. If type tests successfully.
Author R.A.J. B	DR7WIR	KERRA Nederland B.V.
	sists of:	A 2 C Klong KEMA TAD Testing Services

Inspection	Report	Supervise and Conditionin	on Services	98/027757	Page
client:	LG CA	BLE & MACHINERY	Ltd. Ku	ml-Korea	
subject:	1x120	ction/Witnessin 0 mm2, XLPE, 12 , Outdoor seali	7/230 kV	e tests on (Um=245 kV): SF6 sealing end	. S
date and pl	ace of in			to July 28, 199 City KOREA.	1
notes	11				
		el escapt in full without the			
ns document shall no. of page		d except in hell without the no. of pages			
	u 14		s annexed		
no. of page	ur 14	no. of page	s annexed		

The reliability of XLPE cable systems are fully verified by internationally accredited independent laboratories, KEMA (Netherlands), CESI (Italy), Kinetrics (Canada) and KERI (Korea).

Certificates for XLPE cable system over 230kV

Year	Voltage Grade	Spec.	Test Items	Certificate Issued by	Test
1999	400kV, 1200mm ²	IEC62067	Cable, PJ, GIS & Outdoor Termination	KEMA	Type Test
2001 —	230kV, 1200mm ²	– IEC62067	Cable, PMJ, GIS & Outdoor Termination	KEMA	Type Test
	345kV, 2000mm ²		Cable, PJ, GIS & Outdoor Termination	KERI(KEPCO)	Type Test
2002 —	345kV, 2000mm ²	- IEC62067	Cable, PJ, GIS & Outdoor Termination	KERI(KEPCO)	PQ
	400kV, 1200mm ²		Cable, PJ, GIS & Outdoor Termination	KEMA	PQ
2003	345kV, 2500mm ²	IEC62067	Cable, PJ, GIS & Outdoor Termination	KEMA	Type Test
2004 —	345kV, 2500mm ²	– IEC62067	Cable, GIS & Outdoor Termination	KEMA	PQ
	400kV, 2500mm ²	ILC02007	Cable, PMJ, GIS & Outdoor Termination	KEMA	Type Test
2006 —	230kV 800SQ	- IEC62067	Cable, GIS, Outdoor Termination	SGS	Type Test
	345kV 2500SQ	IEC02007	Cable, PMJ, Outdoor Termination	KEMA	Type Test
2007 —	345kV1500SQ	- IEC62067	Cable, PMJ, Outdoor Termination	KEMA	Type Test
	380kV2500SQ		Cable, GIS, Outdoor Termination	KEMA	Type Test
2008	345kV2500SQ	IEC62067	Cable, GIS, PMJ, Outdoor Termination	KERI(KEPCO)	Type Test

9.02 ISO Certificates

We do what it takes to earn quality certifications like ISO 14001, ISO 9001, and ISO/TS 16949 which sets standards for process control and manufacturing flow.

LS Cable

Korea's foremost cable maker in both product list and service range, LS Cable has an integrated supply system from basic raw materials to ultranhigh voltage cables, optical fiber cables, system engineering and installation works. In non-cable sector as well, LS Cable flourishes as a top-rate supplier of information and communication networks, connectors, lead frames, industrial rubber, and aluminum products. Reputed for its outstanding technology and quality, LS Cable is at the service of customers within and oytside Korea. Armed with the world's leading technology in electric power and optic fiber, it has been successful with four joint ventures in Malaysia and Vietnam. It has thus demonstrated leadership in establishing a global

Global Network

Branches

Singapore Office

300 Beach Road #25-07 The Concourse Singapore 199555 Tel. +65-6342-9162-3

Dubai Office

#502 Capricorn Tower, Sheikh Zayed Road P.O.Box 113798 Dubai, U.A.E Tel. +971-4-332-9445

India Office

New Delhi Office C-1, 3rd Fl. Community Centre (Opp. I.I.T Gate) Safdarjung Development Area, New Delhi, 110016 India Tel. +91-11-4602-1657,1658

Mumbai Office #209_2rd FL_Dynas

#209, 2rd Fl. Dynasty, "A" Wing, Andheri-Kurla Road, Mumbai, 400069 India Tel. +91-22-4030-9525

Bangalore Office #111, 1st Floor B Tower, Millenia Towers, Ulsoor, Bangalore, 560008 India Tel. +91-80-4022-4053

Moscow Office

Park Place E-711, 113/1, Leninsky Prospect, Moscow, 117198 Russia Tel. +7-495-956-5814

Riyadh Office #7, 2nd Fl. Al-Rayes Bulding, In Olaya Steet B/D No.28, Riyadh, Saudi Arabia Tel. +966-1-201-3515

Sao Paulo Office 11th Fl. Itavera Building, Rua Arandu, 1544 Conj 111 e 112 Brookline Paulista, Sao Paulo, SP, Brazil, 04562-031 Tel. +55-11-2872-4838

Jakarta Office

Graha Mustika Ratu, 11th Floor, Jl.Jenderal Gatot Subroto Kav.74-75, Jakarta Selatan 12870, Indonesia Tel. +62-21-830-6733

Cairo Office

Flat No.36, El-Zeini Tower, 25 Misr Helwan Road, Maadi, Cairo, Egypt Tel. +20-19-966-2810

Sydney Office

Level 35, Suite 35.02 Northpoint 100 Miller Street North Sydney NSW 2060 Tel. +61-043-865-9066

Subsidiaries

LSCW(Wuxi)

LS Industrial Park, Xin Mei Rd, National High-tech Industrial Development Zone. Wuxi, Jiangsu Province, 214028 China Tel. +86-510-8534-5943

LSCT(Tianjin)

East of Jing-jin, Express, Yixingbu Entrance, Beichen, Tianjin, China Tel. +86-22-2699-7618

LSIC Shanghai, China HQ 12th FL Huamin Empire Plaza, 726 West Yan'an Rd, Shanghai 200050, China

Tzth FL Huamin Empire Plaza, 726 West Yan an Rd, Shanghai 200050, China Tel. +86-21-5237-3399 Beijing

#02 B-17th FL Global Trade Center, 36 Beisanhuan-Dong Rd. Dongcheng Dt., Beijing, China Tel. +86-10-5825-6011

Shenyang

Room B, 15th Fl. XinGangAo Building, 51 Beizhan Rd. Shenhe Dt. Shenyang 110013 China Tel. +86-24-2256-6541

Shenzhen

#611-612, 6013 Shennan Rd. Futian Dt. Shenzhen, China Tel. +86-755-8275-0470

Chendu

#2606, 26th FL CCB Sichuan Building, 88 Ti Du Street, Chengdu 610017 China Tel. +86-28-8676-7951

Huyton Quarry, UK

LSCU(London)

Macon, France Simcoe, Canada Mayzieu, France -Franklin, Indiana USA (Femcoe JV) Kendallville, Indiana USA - 12 Viana de Castelo, Portugal -**Clifton Park, New York USA** Willowbrook, Illinois USA SCA(New Jersey) Hoisington, Kansas USA **Compiegne**, France (SPSX Europe HQ) **Torreon**, Mexico Tarboro, North Carolina USA Brownwood, Texas USA Fort Wayne, Indiana USA Atlanta, Georgia(SPSX HQ) Franklin, Tennessee USA Columbia City, Indiana USA

Sao Paulo Office

Korea Operations

Indong Plant

LS-VINA(Haiphong) South of Binh Bridge Str. So Dau Precinct, Hong Bang Dt, Haiphong, Vietnam Tel. +84-31-540750

LSCV(Hochiminh) Nhon Trach Il-Lockhang IZ, Nhon Trach Dt, Dong Nai province, Hochiminh, Vietnam Tel. +84-61-356-9037

LSCM(Penang) Lot 1192, Mukim 14, Permatang Tinggi, 1400 Bukit Mertajam, Penang, Malaysia Tel. +60-4-588-9609(Ext.34)

LSCI(Haryana) #101, 1st Floor, Park Centra, Sector 30, Gurgaon, Haryana 122 002, India Tel. +91-11-2612-1992

LSCA(New Jersey) 920 Sylvan Avenue, Englewood Cliffs, NJ 07632, USA Tel. +1-201-816-2253

LSCU(London)

#109, Building 3, Chiswick Busuness Park 566 Chiswick High Rd., London, W4 5YA, UK Tel. +44-20-8899-6671

LSCJ(Tokyo)

E 16th Fl. Akasaka Twin Tower 17-22, 2-Chome Akasaka, Minato-ku, Japan Tel. +81-3-3582-9129

Anyang Plant 555 Hogye-dong, Dongan-gu, Anyang, Gyeonggi-do 431-830 Korea Tel. +82-31-428-4114

Gumi Plant 190 Gongdan-dong, Gumi, Gyengsangbuk-do 730-708 Korea Tel. +82-54-469-7114

643 Jinpyeong-dong, Gumi, Gyengsangbuk-do 730-735 Korea Tel. +82-54-469-7763 Donghae Plant 1377 Songjeong-dong, Donghae, Gangwon-do 240-806 Korea Tel. +82-33-820-3114

R&D Center 555 Hogye-dong, Dongan-gu, Anyang, Gyeonggi-do 431-830 Korea Tel. +82-31-450-8114

Always with Our Customers

LS EHV Cable System 12F~17F, LS Tower, 1026-6, Hogye-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-080, Korea Tel. 82-2-2189-9114

©2009 LS Cable, Ltd. All right reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of LS Cable and its licensors, if any. Products shown on this catalog are subject to change without any prior notice.