SH Spring Hanger (Deflection: 25mm) ### ■ Features The SH type anti-vibration spring hanger ensures that vibration generated from the equipment and/or stress by thermal expansion in the pipe and duct while the equipment is running are not transferred to the structure through pipe and duct. The housing needs to be strong enough to stand the weight of the equipment without causing resonance from its own vibration. With the coil spring having a static deflection of 25 mm, the product can maintain the system's natural frequency down to 3~5 Hz and the CR type housing fixture is mounted on top of the housing to prevent high frequency that is passed through pipe and duct from getting into the structure on top of the hanger. Plus, the CR type spring sheet is attached at the bottom to block the high frequency resulting from the vibration that the spring generates itself. ## ■ Usage - For high-efficient vibration control of axial, in-line fan, machine room, pipes in air-conditioning room and ducts - ◆ For high-efficient vibration control of suspended ceiling desk system in, for example, studios and acoustical laboratories # Specification | No. | Name of Components | Material | Standard | | | |-----|--------------------|----------|-----------|--|--| | 1 | Spring Seat | CR | KS M 6617 | | | | 2 | Spring Cap | SS400 | KS D 3503 | | | | 3 | Coil Carina | SUP9 | KS B 2402 | | | | | Coil Spring | HSW3 | KS B 2403 | | | | 4 | Housing Fixture | CR | KS M 6617 | | | | 5 | Hanger Housing | SS400 | KS D 3503 | | | ## ■ Dimension & Selection Guide | Туре | Capacity (kgf) | Spring Constant Weight (kgf/mm) (kg) | Weight | Color | Dimension(mm) | | | | |-----------|----------------|--------------------------------------|--------|--------|---------------|-----|-----|------------| | | | | (kg) | | А | В | Н | Level Blot | | SH-A-10 | 10 | 0.4 | 0.7 | Pink | 82 | 60 | 172 | M10 | | SH-A-25 | 25 | 1.0 | 0.74 | Yellow | | | | | | SH-A-50 | 50 | 2.0 | 0.76 | Red | | | | | | SH-A-75 | 75 | 3.0 | 0.80 | Black | | | | | | SH-A-100 | 100 | 4.0 | 0.84 | Blue | | | | | | SH-B-150 | 150 | 6.0 | 1.80 | Brown | 103 | 79 | 215 | M12 | | SH-B-200 | 200 | 8.0 | 1.84 | White | | | | | | SH-B-300 | 300 | 12.0 | 1.98 | Orange | | | | | | SH-B-400 | 400 | 16.0 | 2.02 | Pink | | | | | | SH-C-500 | 500 | 20.0 | 3.52 | Green | 118 | 100 | 243 | M16 | | SH-C-600 | 600 | 24.0 | 3.56 | Blue | | | | | | SH-C-750 | 750 | 30.0 | 3.89 | Black | | | | | | SH-C-1000 | 1000 | 40.0 | 4.3 | Yellow | | | | | (NOTE) The mentioned size and scale can be altered to improve the quality performance and capacity of the product without any notice. ## ■ SH Test Data # Explanation(Commonness) 1. Vibration Transmissibility(T_r) Vibration Transmissibility is the amplitude ratio of Output to Input. $$T_r = \frac{\textit{Output Amplitude}}{\textit{Input Amplitude}} = \sqrt{\left(\frac{1}{1-\eta^2}\right)^2} \,, \\ \eta = \frac{\textit{Disturbing Frequency of the equipment}}{\textit{Natural Frequency of the Isolator(Damping(c) = 0)}}$$ 2. Natural Frequency(F_{n}) of Vibration Isolation System The mass and spring stiffness dictate a natural frequency of the system. $$F_n = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$ 3. Isolation Efficency(E) Isolation Efficiency in percent transmission is related to Vibration Transmissibility $E = 100(1 - T_r)$ ex) Disturbing Frequency of the equipment=100 Hz, Natural Frequency of the isolator=10Hz $$T_r = \sqrt{\left(\frac{1}{1 - \eta^2}\right)^2} = \sqrt{\left(\frac{1}{1 - \left(\frac{100}{10}\right)^2}\right)^2} = 0.101 \quad E = 100(1 - T_r) = 100(1 - 0.101) = 99(\%)$$ #### ■ Installation Features